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With AC microwave measurements from 10 MHz up to 50 GHz and DC nano-

volt level measurements we have investigated the superconducting phase transition

of YBa2Cu3O7−δ films in zero magnetic field and electrical transport properties of

single walled carbon nanotube networks.

We studied the microwave conductivity of YBa2Cu3O7−δ thin films around Tc

for different incident microwave power and observed that the microwave fluctuation

conductivity deviates from scaling theory at low frequency around Tc. We system-

atically investigated the length scales involved in AC measurements and found the

probed length scale depends on both frequency and current. At low current den-

sity J but high frequency ω, we observed critical behavior without hindrance from

finite-size effects. However, at low current density J and low frequency ω, the ex-

perimentally probed length scale LAC may approach the thickness d of the sample,

and then the critical behavior will be destroyed by finite-size effects. In this regime,

we can not observe the phase transition.



With very small applied microwave power, specifically -46dBm, and high fre-

quency data, we have investigated the critical fluctuations of YBa2Cu3O7−δ thin

films around Tc. It is shown that the determination of Tc is crucial for obtain-

ing critical exponents. Improved temperature stability and conductivity calibration

allow us to take high quality data at small temperature intervals (50mK). This im-

proves the conventional data analysis method and allows a new method of extracting

exponents to be developed. With these two methods, consistent values of Tc and the

critical exponent were precisely determined. Experiments on 6 samples have been

done and the results give a dynamical scaling exponent z = 1.55±0.15. The scaling

behavior of the fluctuation conductivity is also established.

We have also investigated fluctuation effects of Y Ba2Cu3O7−δ by doing frequency-

dependent microwave conductivity measurements and dc current-voltage character-

istics on the same film. The dc measurement verified that the applied microwave

power -46dBm in our ac measurement is small enough for the correct determination

of Tc and critical exponents. For both dc and ac experiments the scaling behavior of

the data was investigated. We found that the dc measurement could be affected by

disorder. For high quality YBCO films and crystal, the critical exponent z is also

around 1.5, which is consistent with ac measurement.

Finally, using our broadband experimental technique and DC current-voltage

characteristic measurement system, we measured the transport properties of single-

walled carbon nanotube films. Based on the real and imaginary parts of the mi-

crowave conductivity, we calculated the shielding effectiveness for various film thick-

ness. Shielding effectiveness of 43 dB at 10 MHz and 28 dB at 10 GHz is found for

films with 90% optical transmittance, which suggests that single walled carbon nan-

otube(SWCNT) films are promising as a type of transparent microwave shielding

material. We also investigated the frequency and electric field dependent conduc-

tivity of single walled carbon nanotube networks of various densities. We found

the ac conductivity as a function of frequency follows the extended pair approx-



imation model and increases with frequency above an onset frequency ω0 which

varies over seven decades with a range of film thickness from sub-monolayer to 200

nm. The nonlinear electric field-dependent conductivity shows strong dependence on

film thickness as well. Measurement of the electric field dependence of the resistance

R(| �E|) allows for the determination of the localization length scale L of localized

states, which is found to systematically decrease with increasing film thickness. The

onset frequency ω0 of enhanced ac conductivity and the localization length scale L

of SWCNT networks are found to be correlated, and an empirical formula relating

them has been proposed. Such studies will help the understanding of transport

properties and broaden the applications of this novel material system.
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Chapter 1

Introduction

In the field of condensed matter physics, one of the important feature of matter

are their electronic properties. In my work, I developed a broadband frequency

measurement system, which can measure electrical conductivity of a sample from DC

to 50 GHz and from room temperature to cryogenic temperature. With this setup,

along with DC nano-volt level measurements, I investigated the superconducting

phase transition of YBa2Cu3O7−δ films in zero magnetic field. More than that, I

also measured the transport properties of single-walled carbon nanotube films, and

these studies will help the understanding of transport properties and broaden the

applications of this novel material system, single walled carbon nanotube(SWCNT)

films. The superconducting phase transition is the focus of my research, and this

chapter will serve as its introduction.

1.1 Introduction to Superconductivity

Superconductivity was first discovered in 1911 by the Dutch physicist Heike Kam-

merlingh Onnes.[1] After liquifying helium in 1908, Kammerlingh Onnes obtained

the refrigeration technique to reach temperatures of a few degrees kelvin. In 1911,

Kamerlingh Onnes began to investigate the electrical properties of metals at ex-

tremely cold temperatures. He measured mercury’s resistance and saw that at 4.2
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K (-269 ◦C), the resistance vanished abruptly. Below 4.2 K, an electrical current

could pass without dissipation through the sample. According to Kamerlingh Onnes,

”Mercury has passed into a new state”. Kamerlingh Onnes called this newly dis-

covered state, Supraconductivity. In 1913, Onnes was awarded the Nobel Prize for

”his investigations on the properties of matter at low temperatures which led, inter

alia, to the production of liquid helium”.

The next hallmark to be discovered was perfect diamagnetism, found by Walther

Meissner and R. Ochsenfeld in 1933.[2] They found that not only a magnetic field

is excluded from entering a superconductor, which could be explained by perfect

conductivity, but also that a field in an originally normal sample is expelled when it

is cooled through Tc. This effect, called the Meissner Effect, causes a phenomenon

that is a very popular demonstration of superconductivity.

Whenever a new scientific discovery is made, researchers must strive to explain

why it happens. In 1935, the brothers F. and H. London gave a description of these

two basic electrodynamic properties of superconductors.[3] After that there was not

much progress until the 1950s, at which time some remarkably complete and sat-

isfactory theoretical pictures came out. They are the phenomenological mean-field

theory of Ginzburg and Landau (GL) in 1950,[4] and the fundamental microscopic

theory of J. Bardeen, L. N. Cooper and J. R. Schrieffer(BCS) in 1957.[5] Very soon,

Gor’kov(1959) showed that the GL theory could be derived from the BCS theory

in the appropriate limit of parameter space[6], and then the basic understanding of

the theory of superconductivity was complete.

In 1986, Georg Bednorz and Alex Muller at IBM in Zurich Switzerland found

superconductivity at 35 K, a startling 12 K above the old record for a super-

conductor, when they were experimenting with a particular class of metal oxide

ceramics called perovskites.[7] Soon after that in February of 1987, a perovskite

ceramic material was found to superconduct at 90 K. Because these materials su-

perconduct at significantly higher temperatures they are referred to as high tem-
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perature superconductors(HTSC).[8, 9, 10] Since then scientists have experimented

with many different forms of perovskites producing compounds that superconduct

at temperatures over 130 K.

These new superconductors seem to obey the same phenomenology as the classi-

cal superconductors, but the basic microscopic mechanism might be different. The

high critical temperature and short coherence length of HTSC make fluctuation ef-

fects much larger than those in conventional superconductors.[11, 13] This makes GL

theory incomplete to describe the behavior of HTSC. Since the discovery of HTSC,

a great deal of work has been done in this field investigating the phase transition in

both zero and non-zero magnetic field.[14] Understanding the effects of fluctuations

is also important for applications of HTSC, such as high-field magnets and passive

microwave devices.

Currently, a great effort is put in investigating high temperature superconduc-

tors. The ease of cooling the new superconductors has greatly influenced the de-

velopment of new materials, material fabrication, and increased the number of ap-

plications of superconductors. Thanks to the increased cryocooler reliability and

decreased cost associated with cooling devices at temperatures greater than 20 K,

electric power applications, high-field magnets and passive microwave devices made

from high temperature superconductors are gradually becoming practical. The his-

tory of superconductors is only just now beginning.

1.2 Superconducting Phase Transitions

Over the years the basic theoretical understanding of superconductivity has been

developed in a series of stages. Among these theories, Ginzburg and Landau theory

is not very complex in its mechanics, but still powerful in phenomenological insight

and provides a convenient foundation for understanding the basic phenomena of

superconductivity.
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In Ginzburg Landau theory, a complex order parameter,ψ(r) = |ψ(r)|eiϕ(r), is

introduced, where the density of superconducting electrons is given by ns(r) =

|ψ(r)|2. This order parameter is assumed to go to zero at Tc0. Note that Tc0 is the

mean-field transition temperature, which can be different from the actual transition

temperature, Tc. GL theory requires that the order parameter ψ(r) is small in

magnitude and varies slowly in space and in time so that the free energy density can

be expanded in powers of |ψ| and |∇ψ|. This is not the case very close to Tc, where

fluctuations can cause the order parameter (and the density of superconducting

electrons) to vary greatly over small distances and short times, which means |∇ψ|
is large and comparable to |ψ|. However, all discussions of superconductivity begin

here and we can still get important results for thermal fluctuations based on GL

theory.

In GL theory, the free energy density is given by[15, 17, 16]

fs(T ) = fn(T ) + α|ψ|2 +
β

2
|ψ|4 +

�
2

2m∗ |(
�

i
∇− q∗A)ψ|2 +

μ0H
2

8π
(1.1)

where fn(T ) is the normal state free energy density at temperature T in zero field,

and α and β are material parameters. The parameter m∗ determines the energy

cost associated with gradients in ψ(r). It has dimensions of mass, and it plays the

role of an effective mass for the quantum system with macroscopic wave function

ψ(r). q∗ is effective charge.

In zero field, considering that the order parameter varies in space, for this case,

ψ(r) will minimize the free energy. According to the variational method we can find

that the free energy will be a minimum when[15, 17, 18]

− �
2

2m∗α0
T−Tc0

Tc0

∇2ψ +
β

α0
T−Tc0

Tc0

|ψ|2ψ + ψ = 0. (1.2)

Here we Taylor expanded α about Tc0 to the lowest order α(T ) = α0
Tc0−T

Tc0
. Eq 1.2

predicts that changes in ψ occur over a characteristic length ξ. A detailed discussion
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of this characteristic length ξ will be given in chapter 3. Here I just give the result:

ξ+ =

√
�2Tco

2m∗αo|T − Tco| for T > Tco, (1.3)

ξ− =

√
�2Tco

4m∗αo|T − Tco| for T < Tco. (1.4)

This length scale is identified as the correlation length. This is the characteristic

length over which the order parameter ψ is uniform. In a pure superconductor far

below Tc, ξ(T ) ≈ ξ(0), which is the temperature independent Pippard coherence

length; however near Tc, ξ(T ) diverges as (Tc0 − T )−1/2.

Since the penetration depth λ also diverges as (Tc0 −T )−1/2 near Tc, the ratio of

the two characteristic lengths ξ and λ is approximately independent of temperature.

This ratio is the famous dimensionless Ginzburg-Landau parameter κ:

κ ≡ λ(T )

ξ(T )
=

2
√

2πHc(T )λ2(T )

Φ0
, (1.5)

here λ(T ) is the penetration depth, ξ(T ) is the GL correlation length, Hc(T ) is the

critical field and Φ0 = h
2e

is magnetic flux quantum. In the classic pure supercon-

ductors, κ � 1(type I), but in dirty superconductors or in the high-temperature

superconductors, κ may be much greater than 1(type II). The value κ = 1/
√

2

separates superconductors of type I and II.[15]

1.2.1 Type I Superconductors

The first discovered superconductors, such as mercury, lead and indium, are all type

I superconductors. The Type I superconductors are mainly comprised of metals and

metalloids that show good conductivity at room temperature. The thermodynamic

phase diagram of Type I superconductors is relatively simple, and is shown in Fig.

1.1.[15]

When subjected to an increasing external magnetic field, the magnetic field

remains zero inside a type-I superconductor until suddenly the superconductivity
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is destroyed. The field at which this happen is called the critical field, Hc. Fig.

1.1 sketches the critical field for different temperatures, Hc(T ). Hc(T ) separates the

normal (resistive) state from the superconducting state (resistance R = 0). For type

I superconductors, below Hc(T ) the material is always in the Meissner state, and

the magnetic field inside always remains zero.

Figure 1.1: Phase diagram of a type I superconductor. The critical point at zero

applied magnetic field is a second-order transition.

For any point, H > Hc(T ) (however, T < Tc and H < Hc(0)), in the phase

diagram of type I, as the temperature is lowered, the superconductor will change

from the normal state to the superconducting state and expel all the magnetic

field inside itself. This is a phase transition. Because this procedure will require

additional energy – a latent heat – the transition is first order.

Ehrenfest made the first attempt to classifying phase transitions. The Ehrenfest

classification scheme labeled phase transitions by the lowest derivative of the free

energy that is discontinuous at the transition. The phase transitions that exhibit a
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discontinuity in the first derivative of the free energy with a thermodynamic variable

is first order transition. The various solid/liquid/gas transitions are classified as a

first-order transitions because they involve a discontinuous change in density, which

is the first derivative of the free energy with respect to chemical potential.

If the first order derivatives of the free energy are continuous, however, and the

second derivative of the free energy has a discontinuity, then the phase transition

is a second order. The second order phase transitions include the ferromagnetic

phase transition in materials such as iron, where the magnetization, which is the

first derivative of the free energy with the applied magnetic field strength, increases

continuously from zero as the temperature is lowered below the Curie temperature.

The magnetic susceptibility, the second derivative of the free energy with the field,

changes discontinuously.

Under the Ehrenfest classication scheme, there could in principle be third, fourth,

and higher-order phase transitions. The Ehrenfest scheme is the first attempt of clas-

sifying phase transitions. It does not take into account the case where a derivative

of free energy diverges, or that some nth derivatives may be continuous while others

are not. The Ehrenfest scheme is an inaccurate method of classifying phase tran-

sitions. In the modern classification scheme, phase transitions are divided into two

broad categories: first-order phase transitions and continuous phase transitions.,

also called second-order phase transitions.

First-order phase transitions are those that involve a latent heat. During such

a transition, a system either absorbs or releases a fixed amount of energy. Because

energy cannot be instantaneously transferred between the system and its environ-

ment, first-order transitions are associated with ”mixed-phase regimes” in which

some parts of the system have completed the transition and others have not. Many

important phase transitions fall in this category, including the solid/liquid/gas tran-

sitions.

The second class of phase transitions are the continuous phase transitions, also
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called second-order phase transitions. These have no associated latent heat. In these

transitions, the first derivative of the free energy(and the entropy) is continuous.

Since there is no additional energy required to switch phases, small variations in

energy can cause local changes in the phase of the material. These variations are

called fluctuations, which will be discussed in detail later in this dissertation.

For type I superconductors, the phase transition from normal state to supercon-

ducting state is first order, except for one point that is at zero applied magnetic

field. There is no magnetic field to expel and no latent heat involved in the process

and so the transition in zero field is second order. The point in the phase diagram

is called the critical point.

1.2.2 Type II Superconductors

Type II superconductors behave differently from type I superconductors. They have

a more complicated and controversial phase diagram. The simplest model phase

diagram is shown in Fig. 1.2.1

In this simplest theory of type II superconductors, there are two different critical

fields, denoted Hc1, the lower critical field, and Hc2 the upper critical field. For

smaller values of applied field, below Hc1, type II superconductors behave similarly

to type I and they are superconducting (R = 0) and expel magnetic fields (Meissner

state). However, for a type II superconductor, once the field exceeds Hc1, magnetic

flux does start to enter the superconductor. As the applied field H is increased, the

magnetic flux density increases gradually. Finally at Hc2, the superconductivity is

destroyed and the material goes into the normal state.

Between the two critical fields, in which type II superconductors differ signif-

icantly from type I, Hc1 < H < Hc2, magnetic flux penetrates the superconduc-

tor in small tubes and each tube carries a quantized amount of magnetic flux,

1Basic information on type II superconductors is from Refs. [15] and [19].
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Figure 1.2: Phase diagram of a type II superconductor. Both Hc1(T ) and Hc2(T )

are second-order phase transitions. The critical point at zero applied magnetic field

is also second-order.

Φ0 = h/2e = 2.07 × 10−15 T-m2. The center of these magnetic flux tubes act in

many ways as a small piece of normal state material. The electrons outside the

cores are in the superconducting state. The normal cores are surrounded by circu-

lating supercurrents. Because of long-range interactions the normal cores and these

circulating cupercurrents often form a flux-line lattice.[18] A normal core with a

circulating supercurrent is also called a ”vortex”. As the vortices enter a super-

conductor, it forms a ”mixed” state. Without defects, when an external current is

applied, the vortices will move and the normal electrons in the cores can dissipate

energy and the resistance(defined as V
I

) does not vanish. So in the strict sense of

zero resistance, the mixed state is not a superconducting state. In practice because
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of pinning on defects in the material, the vortices often move very slowly and make

the resistance immeasurably small in the mixed state. However, the early theories

incorporating sample imperfections still predicted that V
I

approaches a constant as

I vanishes for all non-zero temperatures.[20, 21, 22] Thus the early theories did not

predict the mixed state to be superconducting.

In the area of Hc1 ≤ H ≤ Hc2, the superconducting electrons are correlated over

all length scales in a pure defect-free superconductors. So in terms of the defini-

tion of long-range electronic coherence, the mixed state is superconducting. In this

simple conventional model, there is a phase transition at Hc2. Upon approaching

Hc2(T ) from below, the field inside the superconductor smoothly approaches the

applied field, making Hc2(T ) a second-order transition. Besides in typical type II

superconductors, Hc1(T ) is also a second-order phase transition separating a super-

conducting (R = 0) from the non-superconducting mixed state. However, in low-κ

systems, Hc1 can be a first-order transition.2

1.2.3 The Vortex-Glass Transition

In 1986, a new type of superconductor, La2−xBaxCuO4 (LBCO) with Tc = 35K was

discovered.[7] Very soon, a big jump to Tc of 90 K followed with the discovery of

Y1Ba2Cu3O7−δ (YBCO).[8, 9, 10] In these HTSC materials, the effects of thermal

fluctuations are much larger than the conventional superconductors due to their

higher critical temperature, shorter coherence length, larger magnetic penetration

depth and quasi-two-dimensionality.[54]

The extraordinarily enhanced fluctuation effects in HTSC attracted researchers

to review the phase diagrams of the type II superconductors. Based on renormalization-

group and scaling ideas, Fisher, Fisher and Huse (FFH) made a important modi-

fication of the type II phase diagram. They proposed that there are two different

2See p. 157 of Ref. [15].
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Figure 1.3: Phase diagram of a type II superconductor with the vortex-glass transi-

tion. The proposed phase transition within the mixed state (Hg(T )) is predicted to

be second order. Hc2(T ) is no longer a phase transition, but rather a broad crossover

from vortex-liquid to normal states. There is still a critical point at H = 0.

states between lower and higher critical fields instead of a single mixed state. These

new states are are the vortex glass and vortex liquid. The new phase diagram is

shown in Fig. 1.3.[54]

Above Hc1(T ) there are vortices inside superconductors. However, at low tem-

peratures, the vortices are pinned and not able to move, so there is no dissipation,

corresponding to a supercondcuting(zero-resistance) state in the mixed state. As

the temperature increases, the vortices will start to move and are able to dissipate

energy, corresponding to a vortex liquid state. The name of vortex glass and vor-

tex liquid partially tell their characteristics, unmovable and movable. A line, called

Hg(T ), separates the vortex-glass from vortex-liquid phases, and also the supercon-
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ducting state from the normal state. Because the vortices are not expelled from the

superconductor and there is no energy cost here, the vortex-glass transition is ex-

pected to be second-order.(Maybe first order transition in some limit, low-κ systems)

In this phase diagram, the Hc2(T ) does not correspond to any phase transition, but

a broad, continuous crossover to the normal state.

After the FFH theory of the vortex-glass phase diagram, lots of work has been

done to investigate the phase transition of HTSC. A consensus was gradually reached

that the vortex-glass transition does exist. D.R. Strachan, a former student in our

group, investigated this transition, discussed the validity of how researchers deter-

mine the parameters governing the transition, and called into question whether the

vortex-glass transition exists or not.[95] On the other hand, in zero field the exis-

tence of a second-order phase transition is not in doubt and at least in principle

the critical parameters for this transition are well known. M. C. Sullian, another

former student in our group, investigated the normal-supercondcuting phase transi-

tion in zero field and hoped to clarify the controversial vortex-glass transition with

the zero field result. In spite of many of experiments done to determine the critical

exponents in both zero field and in finite magnetic field, there is still no consistent

interpretation.

1.3 Fluctuations in Conventional Superconductors

At any non-zero temperature, fluctuations occur because a system can borrow an

energy kT from its environment. For T < Tc , this makes it possible to temporarily

increase the energy of a small volume of the superconductor, perhaps enough to

drive the small volume into the normal state. For T > Tc, the opposite can happen

and a small volume of normal state can go to the superconducting state. Simply

speaking, the effect of thermodynamic fluctuations allows us to observe some quasi

normal state properties below Tc and some quasi superconducting state properties
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above Tc and round off the sharp corners and discontinuities which otherwise would

be expected to occur at Tc. More concretely, above Tc, fluctuations towards the

superconducting state lead to the appearance of excess conductivity, diamagnetism,

specific heat, and tunneling currents; below Tc, fluctuations towards the normal

state lead to the appearance of resistance in thin wires and the breakdown of fluxoid

quantization in small rings.

In conventional superconductors, these fluctuation effects are generally small, but

they are still measurable experimentally, particularly in superconducting samples of

reduced dimensionality (on the scale of the Ginzburg-Landau coherence length),

such as thin films, whisker crystals, and powders.[51]

In high-Tc superconductor, the effects of thermal fluctuations are dramatically

enhanced due to their high critical temperature, short coherence length, larger mag-

netic penetration depth and quasi-two-dimensionality.[54] Close to Tc, there is a

regime where the fluctuations are large and dominate the properties of the super-

conductors, called the critical regime. The critical regime and the properties of

superconductors in this regime will be discussed in detail in chapter 3. The large

thermal fluctuations enhanced the critical regime of high Tc superconductor com-

pared to conventional superconductors. Take YBCO for example, although different

estimation methods give a critical regime ranging from 0.01K to 5K wide around

Tc, they all agree that this region is experimentally accessible since good laboratory

measurement stability in temperature is of the order of millikelvin. This permits

study of fluctuations in far greater detail and provides the opportunity to measure

critical behavior near the superconducting phase transition.

Although we are more interested in the fluctuations in the HTSC, fully un-

derstanding fluctuations in the conventional superconductors is necessary, which is

helpful and illuminating for the research of HTSC. Ginzburg and Landau theory is

powerful in phenomenological insight and provides a convenient foundation for un-

derstanding the basic phenomena of superconductivity. GL theory and its extension
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describe well fluctuation effects in conventional superconductors. In this section, we

will review some experimental phenomena and theoretical work on fluctuations in

the conventional superconductors.

1.3.1 Zero-dimensional Superconductors

Zero-dimensional means the size of the particle is less then the correlation length

ξ. In this case the order parameter ψ can be seen as uniform and there is no need

to consider the spatial variation of the order parameter. For a zero-dimensional

particle of volume V , the GL free energy relative to the normal state is simply:

F = (α|ψ|2 +
1

2
β|ψ|4)V (1.6)

Because of thermal fluctuation, the values of the order parameter with F−F0 ≤ kBT

should also occur. The magnitude of the fluctuations of the order parameter, δψ

can be estimated[51]:

(δψ)2 ≈ kBT/(2|α|V ) T < Tc (1.7)

(δψ)2 ≈ kBT/(αV ). T > Tc (1.8)

Fluctuations get large near Tc(α→ 0) or for very small particles (small V).

Because of fluctuations the value of |ψ|2 is not fixed, the measurable quantity is

< |ψ|2 >, which is the average of |ψ|2 over time. An exact solution for < |ψ|2 > can

be found by taking a direct thermodynamic average over all possible values of the

order parameter:

< |ψ|2 >=

∫ |ψ|2exp(−F/kBT )d2ψ∫
exp(−F/kBT )d2ψ

(1.9)

This result was first obtained by V. V. Shmidt in 1967[27] and was later re-derived

by Parkinson and Muhlschlegel et al. in 1972[24, 25].

For a zero-dimensional sample, the most direct measure of < |ψ|2 >is the dia-

magnetic susceptibility. The first experimental observation of the diamagnetic sus-

ceptibility due to fluctuations was first done by Buhrman and Halperin in 1973.[23]
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Figure 1.4: Measured diamagnetic susceptibility of aluminium powders with differ-

ent mean particle sizes. The full curves are the GL theory including fluctuation

effects, averaged over the known particle distributions. (Adapted from Buhrman

and Halperin [23])
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They used a SQUID magnetometer to measure the diamagnetic susceptibility of

aluminium powders formed by evaporating aluminium in an inert gas atmosphere.

These curves are shown in Fig. 1.4.

The superconducting contribution to the specific heat can also be calculated

exactly.[26] Unfortunately the results are hard to test by experiment because it

is extremely difficult to achieve thermal equilibrium among a sufficient number of

isolated tiny particles.

1.3.2 Fluctuations Above Tc – – Equilibrium Properties

Diamagnetism

In the Meissner state a bulk superconductor develops a diamagnetic magnetization

M = −H/4π which reduces B to zero inside the superconductor everywhere except

in a small surface layer of thickness λ (the penetration depth). For temperatures

above Tc, there is still a small diamagnetic magnetization M ′ which comes from fluc-

tuations. This diamagnetic magnetization M ′ above Tc may be calculated from the

excess free energy per unit volume according to the usual thermodynamic relation:

M ′ = ∂ < F > /∂B (1.10)

The free energy density in Eq. 1.10 can be determined via the partition function Z

of the system and is given by:

< F >= −kBT lnZ = kBT
eB

π�c

∫
dkz

2π

∞∑
n=0

ln(
πkBT

Enkz

) (1.11)

where

Enkz = (�2/2m∗)(k2
z + ξ−2) + (n+

1

2
)�ωH , (1.12)

with ωH = e∗H/m∗c, the index n being over the degeneracy of the Landau levels.

A. Schmid calculated the average free energy density to second order in B and

obtained the zero-field susceptibility:[28]

χ′ = −π
6

kBT

Φ2
0

ξ(T ) (1.13)
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Figure 1.5: Measured fluctuation magnetization above Tc versus temperature and

field of a bulk cylindrical sample of indium. At large fields the magnetization is

suppressed. (Adpted from Gollub et al.[29])

The first experimental measurement of fluctuation diamagnetism was made by

Gollub et al. in 1969.[29] They found that in lead samples the fluctuation diamag-

netism was still detectable even at approximately twice Tc. Some typical data are

shown in Fig. 1.5. Here any value of M ′ other than zero is a sign of fluctuations.

In larger magnetic fields, the fluctuations should be smaller and weaker than in

the zero field limit Eq. 1.13.[51] Prange showed the fluctuation magnetization M ′

could be written in the form M ′/H1/2T = f(x) where f is a universal function of

x = (T−Tc0/(Tc0−Tc2(H)).[30] However, the experimental results systematically fell

below the GL ’universal curve’ when they were scaled. This disagreement was found

to be a result of the various limitations of the GL theory due to the slow- variations

approximation. To deal with this, Patton et al. proposed the introduction of a

cut-off energy for short-wavelength fluctuations and got a new universal function

f ′(x,H/H∗), where H∗ ≈ Hc2(0).

Then Gollub et al. found that such a scaling procedure could indeed eliminate
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Figure 1.6: Universal behavior of scaled fluctuation magnetization at Tc0 versus

scaled field for a number of materials. The broken curve is the clean-limit micro-

scopic theory and the solid curve is the scaled experimental results. (Adpted from

Gollub et al. [29])
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the material dependence of their results in 1970.[32] Fig. 1.6 shows the remarkable

universal behavior for different materials.

However, in clean materials with long mean free path, the scaling field Hs (empir-

ically defined as the filed at which M ′ at Tc0 falls to half the GL prediction) is much

smaller than predicted by Patton et al. This discrepancy was discussed later by Lee

and Payne(LP)[34], Kurkijarvi et al.(KAE)[35] and Maki et al.[36] They found that

the effects of non-locality become important at much lower fields than Hc2(0), and

therefore account for the smaller scaling fields. This is in good agreement with the

dirty-limit microscopic calculations, for which the non-locality is unimportant.

In sum, the study of fluctuation diamagnetism in bulk samples has not only

demonstrated the existence of superconducting fluctuations far above Tc, but more

over has proven useful for exploring the limits of the GL theory.

Specific Heat

The fluctuation contribution to the specific heat can be calculated similarly by com-

puting the partition function and average free energy similar to the diamagnetism

calculation. If there are no fields we can write the free energy as:

F =
∑

k

(α + �
2k2/2m∗)|ψk|2. (1.14)

where ψk is a term of the Fourier series expansion of ψ(r) =
∑

k φkexp(ik · r). Using

the thermodynamic relation for the specific heat CV = − T
V

∂2

∂T 2 < F >, we can get

the specific heat result of the fluctuation part for bulk materials[33]:

CV = (kB/8πξ
3(0))t−1/2, (1.15)

where t is reduced temperature t = T−Tc

Tc
. Unfortunately this is too small compared

to the mean-field jump in the specific heat at Tc in typical clean materials until very

close to Tc, t ∼= 10−11. Even for very dirty materials, in which ξ(0) is small, it is still

too small to be observable.
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Figure 1.7: Measured heat capacity of an individual thin film. The Tc0 ≈ 2.075K

broken curve shows the t−1 contribution from fluctuations expected neglecting the

critical region near Tc0. The full curve is a two-parameter fit of a theory which takes

the critical region into account. (Adapted from Zally and Mochel[37])

However, for two-dimensional thin films or in larger magnetic field, the fluctu-

ation specific heat can be enhanced so that it can be measured. Zally and Mochel

were able to measure the heat capacity of individual amorphous Bi-Sb alloy films

using AC calorimetry techniques.[37] In Fig. 1.7 results for one of their thin films are

shown. We see that far away from Tc (outside the critical region)the data shows t−1

dependence. Close to the Tc (inside the critical region), the t−1 dependence fails to

describe the data. Gunther and Gruenberg[38] and Grossmann et al.[40] extended

the theory into the critical region by using a Hartree-type approximation, in which

they replaced ψ4 by 2 < ψ2 > ψ2− < ψ2 >2 in a self-consistent way. We see an

excellent fit has been achieved in the full curve in Fig. 1.7.
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1.3.3 Fluctuations Above Tc – – Paracondcutivity

The first-discovered and most striking aspect of superconductors is their infinite

DC conductivity below Tc. Historically and realistically, conductivity phenomena

are always important in studying superconductors. So it is natural to study how

conductivity is affected by fluctuations. For temperatures above Tc, there is excess

conductivity due to fluctuations, often called ’paraconductivity’ in analogy with

’paramagnetism’.

Paraconductivity above Tc was first derived from the microscopic theory by

Aslamzov and Larkin [55] and then from GL theory by Abrahams and Woo[41]

and Schmid in 1968[42]. Here are the results:

σDC
3DAL =

1

32

e2

�ξ(0)
t−1/2 (1.16)

σDC
2DAL =

1

16

e2

�d
t−1 (1.17)

σDC
1DAL =

π

16

e2ξ(0)

�S
t−3/2 (1.18)

(1.19)

where ξ(0) is the coherence length at 0 K and t = |T/Tc − 1|; d is the thickness

d � ξ; S is the cross-section area S � ξ2. Moreover, for samples of intermediate

thickness, we can interpolate between the above forms and get the results. These

predictions were found to be in good agreement with experimental results on dirty

superconductors[122]. Some experimental results are shown in Fig. 1.8.

However, for cleaner films, the predicted universal behavior was not observed.

Maki and Thompson investigated the difference between the AL prediction and the

experimental results and proposed that it comes from the indirect effect of the fluc-

tuations on the quasiparticle conductivity.[56, 57] The AL contribution comes from

the direct acceleration of the fluctuation-induced superconducting pairs. These su-

perconducting fluctuations then decay into pairs of quasi-particles of nearly opposite

momenta. By time-reversal symmetry, the quasi-particles remain in a state of small
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Figure 1.8: Universal variation of the measured excess conductance per square

G′
�[(kΩ/�)−1] due to fluctuations with reduced temperature t above Tc, for a variety

of amorphous films. The full curve is the Aslamazov-Larkin (AL) theory. (Adapted

from Glover[122])
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total momentum even after scattering from an impurity potential and continue to

be accelerated like they were superconducting pairs. The quasiparticle life is lim-

ited, and they decay in several ways, which ultimately include decaying back into a

superconducting fluctuation. The calculation of the indirect(Maki-Thompson) con-

tribution can be found in many papers. [56] [57] The MT term explained a larger

magnitude and an anomalous temperature dependence of the fluctuation conduc-

tivity observed on cleaner superconductor[51].

Measurement of the conductivity requires the application of an electric field,

which may affect the measured result. This problem was first posed by Smith et

al. in 1968, and solved in the high-field limit by Hurault.[44] Experimentally the E

dependence of the conductivity has been studied by Thomas and Parks[45], Klenin

and Jensen [46] and other researchers.[47] The effects of the magnetic field on the

fluctuation conductivity were also discussed in the late 1960’s and early 1970’s. A

lot of theorists and experimentalists made their contributions, such as H. Schmidt,

P. Fulde, K. Maki, R.S. Thompson, B. Serin, R. R. Hake.[51]

The frequency dependence of the fluctuation conductivity σ′(ω) gives impor-

tant additional information checking the validity of the time dependent Ginzburg-

Landau(TDGL) theory above Tc. The high-frequency components of the fluctua-

tions fall off above a frequency ω ∼ 1/τk = (1 + k2ξ2)/τGL, so that the fall-off of

the conductivity with frequency contains direct information about the time depen-

dence of the fluctuations. The frequency dependence of the AL-term was calculated

by Schmidt [58] using the time-dependent Ginzburg-Landau equation. And there

is also a frequency dependent MT-term, which was calculated by Aslamazov and

Varlamov [59].
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1.3.4 Fluctuations Below Tc

Fluctuation effects exist not only above Tc, but also below Tc, where fluctuations

towards the normal state lead to the appearance of resistance in thin wires and

the breakdown of fluxoid quantization in small rings. Well below Tc, the effects of

thermodynamic fluctuations are small. The system departs just a little from the

behavior of the ideal superconducting state. Therefore we can describe its behavior

starting from the ideal superconducting state, and then consider fluctuations as a

kind of perturbation from this ideal behavior. This approach is useful in understand-

ing some phenomena below Tc. For example, the appearance of resistive behavior

below Tc is caused by fluctuations which lead to individual ’phase-slip’ events. This

approach forms a natural complement to our understanding of the paraconductivity

above Tc caused by small departures from the ideally normal state. The phase-slip

idea was developed before the paraconductivity theories, but its full experimental

confirmation came later. Historically, the phase-slip mechanism was proposed by

W. A. Little in 1967 [60]. Then Langer and Ambegaokar(LA) developed it and [49]

and finally McCumber and Halperin made their contribution in 1970 [50]. Along

with the development of the experimental instruments, such as SQUIDs and high

precision voltmeters, it was possible to measure fluxoid quantization in supercon-

ducting rings and measuring the small resistances directly. In the 1970’s, a lot of

experimentalists put their efforts here and made things clear. They are Lukens et

al, Warburton, Newbower et al. and Miller and Pierce.[51]

1.3.5 Summary

In this section, we described how thermodynamic fluctuations alter the properties

of superconducting materials in the vicinity of the superconducting phase transition

in a number of ways for conventional superconductors. Above Tc, thermodynamic

fluctuations lead to the appearance of excess conductivity, diamagnetism, and spe-
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cific heat; below Tc thermodynamic fluctuations lead to the appearance of electrical

resistance and the breakdown of flux quantization.

When discussing the thermodynamic fluctuations there is a length scale over

which individual fluctuations are important. The length scale is the Ginzburg-

Landau coherence length, which determines the dimensionality of a given sample

geometry. Generally the fluctuation effects are more important in samples with

reduced dimensionality, because the thermal energy kBT leads to larger effects in

smaller fluctuation volumes (kBT ∼ FξD, where D is dimensionality and F is fluctu-

ation induced free energy density change). A fairly complete picture has been given

in this section for the fluctuations effects on the type I superconductors [51].

1.4 Fluctuations in High Tc Superconductors

In the previous section thermodynamic fluctuation effects in conventional supercon-

ductors in the vicinity of the superconducting phase transition have been described.

However, the fluctuation effects in the high temperature superconductor are differ-

ent. In the high Tc superconductors, the thermal fluctuation effects are dramatically

enhanced due to a combination of factors of higher transition temperatures, shorter

coherence length(smaller coherence volume), large magnetic penetration depth and

quasi-two dimensionality. It makes the critical regime, in which fluctuations of the

order parameter are important, of high temperature superconductors much larger

than the conventional superconductors and gives a great opportunity for experi-

mental investigation of fluctuation effects. In this section, I will briefly review the

research on fluctuation effects in the HTSC.

1.4.1 Universality

In the modern theory of critical phenomena, there are some important things, such

as the universality of critical exponents, certain critical amplitude ratios, relations
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between the critical exponents and universal scaling functions. Only when we un-

derstand these things will we have a clear understanding of phase transitions and

critical phenomena. From Wilson’s renormalization group, we get a deep under-

standing of the origin of the universality and the critical power laws.

Continuous phase transitions are characterized by the system undergoing a tran-

sition from a symmetric or disordered state to a broken symmetry or ordered

state. [52]. As the temperature changes and approaches the continuous phase transi-

tion, several remarkable phenomena appear, usually with power laws. They are the

so called critical phenomena and the exponents used to characterize those power laws

are called critical exponents. There is an important length scale ξ, which diverges

at the critical point. This divergence can be described by a power law:

ξ = ξ±0 |t|−ν ,± = sign(t).

Here the critical exponent ν and the critical amplitude ξ±0 characterize divergence

of the correlation length. t is the reduced temperature,t = T−Tc

Tc
, sign(t) = + above

Tc; sign(t) = − below Tc.

In the vicinity of the critical point, dynamical properties also have anomalous

behaviors, such as transport coefficients, relaxation rates, and the response to time

dependent perturbations. These anomalous properties depend on the equations of

motion and are derivable from relaxation time τ dependent correlation functions.

Similar to the correlation length, this relaxation time diverges as criticality is ap-

proached, and there is also a power law dependence on reduced temperatures:

τc ∝ ξz ∝ |t|−νz,

where z is called the dynamic critical exponent and ν is the static critical exponent.

One of the important properties here is universality. It turns out that systems

which belong to the same universality class have the same complete set of critical ex-

ponents. According to the spatial dimensionality D and number of order parameter

degree of freedom n, the universality classes have three basic cases:
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• D,n =3, Heisenberg spins S = (Sx, Sy, Sz) in D spatial dimensions;

• D,n =2, planar spins S = (Sx, Sy, 0)(XY-model),superfluids, superconductors

in D spatial dimensions;

• D,n =1, Ising spins S = (0, 0, Sz) in D spatial dimensions.

1.4.2 Static Critical Phenomena

It is expected that the normal-superconducting phase transition of HTSC belongs to

the universality class of 3DXY, D=3 and n=2, with static critical exponent ν = 2/3.

Experimentalists have measured thermodynamic properties in zero field, such as

penetration depth, magnetic susceptibility, specific heat and thermal expansivity

to explore the effects of superconducting fluctuations and to determine the static

correlation-length critical exponent ν. The following is a brief discussion of the

results if these measurement.

Specific heat and thermal expansivity in zero field

First we consider the critical behavior of the specific heat in zero magnetic field

close to optimal doping. Particularly suitable candidates to assess the occurrence of

this characteristic 3D-XY critical behavior are Y Ba2Cu3O7−x and DyBa2Cu3O7−x.

The measurements have been done by A. Junod et al. [80], A.Kozlowski et al. [81],

M. B. Salamon et al. [67] and N. Overend et al. [70].

The capacitance dilatometry method makes is possible to measure the expan-

sivity with high resolution without the necessity to subtract a background. Ac-

cording to thermodynamics, we have relations between expansivity(α̃i), pressure

coefficient(αpi) and specific heat(C) [85] [86] [87]:

α̃±
i =

Tc

T
αpiC (1.20)

α̃±
i is the expansivity along the spatial direction i, and

αpi =
1

Tc

dTc

dpi
(1.21)

27



denotes the pressure coefficient at Tc. We obtain a relation between the singular

parts of expansivity and specific heat:

α̃±
i = αpi(

A±

α
|t|−α + B±), α̃b−a = αb − αa (1.22)

V. Pasler et al. did such an expansibility measurement. Their results, which

are given in Fig. 1.9, showed fluctuation-dominated behavior over more than two

orders of magnitude of the reduced temperature and are consistent with 3DXY

universality.[71] However, due to sample inhomogeneities there is at present no ex-

ample of a phase transition in solids as clean as the remarkable case of the lambda

transition in superfluid helium, for which over more than 7 decades of scaling have

been observed.[72]

We also note that as t gets smaller, which means at temperature close to Tc,

the result starts to deviate from scaling behavior. T. Schneider claimed that this

deviation is due to finite size of the sample. He developed a finite size scaling theory

that will be discussed later.

Temperature dependence of the penetration depth

Since the correlation length ξ diverges close to Tc, one expects that the penetration

depth also diverges and shows critical behavior as:3

1

λ2
i

=
1

λ2
i,0

tν , i =⊥, ‖ . (1.23)

Fig. 1.10 gives the experimental data of S. Kamal et al., which clearly showed

penetration depth deviations from mean field behavior close to Tc. The data is also

consistent with ν ≈ 2/3. Data of similar quality have been reported by Buzdin et

al. [82], Zech et al. [75], S. M. Anlage et al. [66] and S. Kamal et al.[64]. All the

measurement showed 3DXY critical behavior around Tc.

3In GL theory, λ ∝ n
−1/2
s , ξ ∝ t−1/2 and λ ∝ t−1/2; close to Tc, λ ∝ n

−1/2
s and ns ∝ ξ−1, so

λ ∝ t−ν/2; very close to Tc, λ ∝ ξ ∝ t−ν . [11, 65]
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Figure 1.9: α̃b−a = αb − αa versus temperature T and reduced temperature T − Tc,

semilog representation. The dashed curves represent a fit yielding A+/A− = 0.9to1.1

and |α| ≈ 0.018. Adapted from [71]
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Figure 1.10: 3DXY critical behavior of the superfluid density in the superconducting

state of a sample annealed to Y Ba2Cu3O6.92. λ
3(T = 0)/λ3(T ) verses T(◦,left and

bottom axes) and λ(t) verses reduced temperature t = 1− T/Tc on log-log scale( �,

right and top axes). Adapted from [64]
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Temperature dependence of the diamagnetic susceptibility

Similar to the penetration depth, the diamagnetic susceptibility in the zero field

limit is altered by critical fluctuations. We have:

χz ∝ |t|−ν (1.24)

T. Schneider [75] measured the fluctuation contribution to the susceptibility in

sintered Y Ba2Cu3O6.96. In the reduced temperature range 10−4 < t < 10−2, he

analyzed the data and got ν = 0.66(5)and Tc = 92.14(4)K. The results are consis-

tent with 3D-XY critical behavior. Other groups also reported consistent results,

including M. B. Salamon et al., A. Pomar et al. and R. Liang.[67, 68, 69]

Other evidence of 3DXY behavior

Further evidence for critical 3D-XY behavior have been observed in other experi-

ments, such as the magnetization measurement. From the classical scaling theory,

which is discussed in Schneider’s book [52], the magnetization data should scale

and fall onto a single curve. Salamon et al. [67] measured magnetization for an un-

twinned Y Ba2Cu3O7−x single crystal. With the assumption of ν = 2/3, the data col-

lapsed to a single curve very well. Also Roulin et al. [83] and Jeandupeux et al. [84]

got remarkable data collapse from magnetization measurement of Bi2Sr2CaCu2O8,

which confirmed the agreement of the magnetization data with the 3D-XY scaling

behavior.

1.4.3 Dynamical scaling

We have shown that a great number of experiments have been done to investigate the

static critical phenomena near the normal-superconducting phase transition. Those

experimentalists largely agreed that the normal-superconducting phase transition

belongs to universality class of 3DXY and static correlation-length critical exponent

ν � 0.67.
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In the vicinity of the critical point, dynamical properties also have scaling behav-

iors. The dynamical properties, such as transport coefficients, relaxation rates, and

the response to time-dependent perturbations, which depends on the nature of the

dynamics near Tc, can determine both the static critical exponent ν and dynamical

critical exponent z. Fisher, Fisher and Huse [54] gave a general scaling form to

describe the phase transition from the superconducting state to the normal state in

transport properties. In zero field H = 0, the two variables are current density J

and frequency ω. This leads to two commonly used methods to investigate the dy-

namical scaling, DC conductivity measurement and AC conductivity measurement.

Now we discuss the two methods separately.

For the DC conductivity measurement, there has been lots of work to investigate

fluctuation behavior and to extract critical exponents.[97, 98, 99] The problem is that

those measurements have yielded a wide range of values for the critical exponents.

The phase transition in magnetic field, which corresponds to the vortex-glass

transition, has been extensively studied using current-voltage(I-V) isotherms and

recently a new criterion has been developed to determine whether or not a phase

transition has occurred.[95, 96] Although there is a trend to believe that a vortex-

glass transition does exists, there is little consensus on the values of the critical

exponents ν and z.[97, 98, 99].

In zero magnetic field the existence of an N-S phase transition is not in doubt.

Very close to Tc(|T −Tc| ≤ 2K),[11] the transition is commonly believed to obey the

3DXY model, with ν = 2/3. For a disordered system, the value of ν increases.[77, 78,

79] For the universality class of the 3D-XY (n=2), the dynamical critical behavior

can be model-E or model-A dynamics depending on the conserved quantities. [61]

Contrary to the agreement on the value of ν, the dynamics of this transition is

still under debate and the value of z is not clear from both theoretical work and

experimental results. Tab. 1.1 shows some previous theoretical predictions and

numerical simulations on critical exponents in zero field.
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Table 1.1: Previous theoretical predictions and numerical simulations on critical

exponent z in zero field

Exponents z Dynamics References

theoretical prediction z = 2.0 Model-A D. S. Fisher et al.[54]

theoretical prediction z = 1.5 Model-E F. S. Nogueira et al. [73]

numerical simulations z = 2.0 Model-A V. Aji et al. [74]

numerical simulations z = 1.5 Model-E J. Lidmar et al. [77]

The experimental results are even more controversial. From voltage current

characteristic measurement, J . M. Roberts et al. and T. Nojima et al. have found

vortex-glass-like exponents(ν = 1.1, z = 8.3) in small fields(< 10 mT).[100] Also

at low fields, others find 3D-XY-like exponents z = 1.25 and ν = 0.63 through DC

conductivity measurement[101].

In zero field, T. Schneider and H. Keller reported z = 2 and ν = 2/3 in the

reduced temperature range 6 × 10−3 < t < 10−2 for sintered Y Ba2Cu3O6.96. For

temperatures close to Tc, there is a deviation from power-law, which they claim is

due to a finite-size effect.[103] More recently, S. H. Han et al. reported a 2D to

3D crossover and a critical regime with multiple exponents through DC electrical

conductivity measurement of Bi2Sr2CaCu2O8+δ single crystals.[104]

AC conductivity measurements are another way to test scaling theory and to

obtain the critical exponents. AC measurements determine both the real and imag-

inary parts of the fluctuation conductivity, providing a stringent test of critical

dynamics.[105, 106] Until now, most of the available microwave experimental data

have been restricted to fixed frequencies.[107, 105, 108, 109, 113] Measurements over

a broad frequency range allow us to probe the dynamical behavior of the system.

However these experiments are seldom done, and the available results are inconsis-

tent: Values of z range from 2 to 5.6. Booth et al. systematically investigated the

33



frequency-dependent microwave conductivity of YBCO films above Tc and obtained

z = 2.3 to 3.[91] Also for a YBCO film, G. Nakielski et al. measured frequency-

dependent conductivity using a contactless method and obtained z ≈ 5.6.[110] Os-

born et al. did a similar experiment and discussed the linear and nonlinear scaling of

complex conductivity of Bi2Sr2CaCu2O8+δ(BSCCO) films below Tc and obtained

z ≈ 2.[111] For an optimally doped La2−xSrxCuO4(LSCO) film, Kitano et al. found

that their data were consistent with the 3D-XY model with diffusive dynamics:

ν ≈ 0.67, z ≈ 2 in a reduced temperature range 0.008 < t < 0.03.[112]

Although lots of work have been done here, there is clearly a lack of consensus

on the dynamical fluctuations of the superconducting transition. Further work to

extract a reliable value of z and ν is necessary.

1.5 Summary

In this chapter, I briefly introduced the background to the normal superconducting

phase transition. There have been a lot of work investigating this transition both

in magnetic field and zero field. In my work, I concentrate on zero field where the

existence of a second-order phase transition is not in doubt. It is hopeful that the

zero field result is helpful to clarify the controversial vortex-glass transition.

We use AC measurements over a broad frequency range to probe the dynamical

behavior of the YBCO thin film. Our experimental setup, Corbino reflection mea-

surement system, will be introduced in chapter 2. Following that, chapter 3 serves

as a theoretical basis for our work on phase transitions.

Then in chapter 4, where the growth and characterization of the sample will

be given, the experimental data will be shown and analyzed, and the dynamical

critical exponent will be extracted and discussed. In addition, the power dependence

measurement will also be mentioned, which is the chapter 5.

AC and DC measurements are two commonly used ways to extract critical ex-
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ponents. In chapter 6, I will show the measurement of AC and DC on the same film

and compare the results.

The Corbino reflection measurement is a powerful tool, but not only for the high

Tc fluctuation measurement. I also utilize it to measure microwave properties of

single walled carbon nanotube films. The results are shown in chapter 7.

Chapter 8 is a summary of the whole thesis.
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Chapter 2

Corbino Reflection Measurement

Technique

The study of the electronic properties of matter has historically provided much

important information in the field of condensed matter physics. The investigated

materials include not only those commonly used in every-day life like insulators and

metals but also more unusual ones, such as superconducting materials that require

special conditions to reveal their properties. Depending on the energy scale, or

frequency range in another words, that we are interested, the tools used to access

these electronic properties are different. In this chapter first a brief overview of

the techniques used in different frequency ranges is given and then I focus on our

Corbino setup, which is able to measure surface impedance in the frequency range

from 10 MHz to 50 GHz.

2.1 Overview of the Spectroscopy

The electromagnetic spectrum of interest in condensed matter physics distributes

over a very wide frequency range. Presently there is not any single tool which can

cover all relevant frequencies. For different energy scales of interest, the tools are

different. To cover a very large frequency range, one needs to combine different
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tools. Although the tools differ upon the frequency of interest, all spectroscopic

systems normally contain four major components: a radiation source, a detector,

the sample or device under test, and some mechanism to select, to change, and to

measure the frequency of the applied electromagnetic radiation.[119] In this section

I will give a brief introduction to spectroscopy including aspects such as sources,

detectors and measurement techniques.

Any spectroscopy system needs a source to generate electromagnetic waves.

Normally there are four different principles of generating electromagnetic waves:

lasers, Electron beam radiation sources, solid state oscillators and thermal radiation

sources, as shown in Fig. 2.1. At low frequencies(DC to GHz) normally used sources

are solid state oscillators, such as Gunn oscillators or IMPATT diodes. These solid

state devices are monochromatic and often tunable over a wide range. Above the

GHz range, utilizing the interaction of charge and electric field, the accelerated

electron beams can be modulated to create electromagnetic waves.(e.g. klystron,

magnetron, backward wave oscillator, gyrotron) Through this method, coherent

monochromatic sources can be obtained up to about 2 THz. According to Planck’s

law, any matter above absolute zero temperature(0 K) emits electromagnetic radi-

ation, which is black-body radiation, also called thermal radiation. Thermal radia-

tion creates a broad spectrum from the far-infrared up to the ultraviolet. However,

at both low and high ends of the range the thermal radiation intensity drops off

dramatically because their peak intensity is typically in the infrared range. The

thermal radiation source can only give incoherent light. In the infrared, visible and

ultraviolet spectral ranges, lasers are normally utilized. For some lasers can deliver

coherent and also tunable radiation, as well as short pulses. In recent years, the

development of new technologies have allowed the spectral range of synchrotron

radiation to extend down to the far infrared range.

Generally electromagnetic radiation is detected by its interaction with matter.

The principles used for radiation measurement devices includes the photoelectric
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Figure 2.1: Ranges of the electromagnetic spectrum in which the different radiation

sources are applicable. Adapted from [119] Page 211.

effect, the thermal effect(heating), luminescence and photochemical reactions. In the

low frequency range, from DC to GHz range of frequency, semiconductor devices are

used, Schottky diodes for example. For higher frequency ranges, thermal detectors

are used, such as Golay cells and bolometers. These thermal detectors can operate

up to a few THz. The infrared range is covered by pyroelectric detectors. As for even

higher frequencies, in the visible and ultraviolet spectral ranges, photomultipliers

are extremely sensitive and widely used detectors. Details of the different detectors,

their principles and their advantages can be found in many books.[120] Fig. 2.2
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shows the commonly used various detectors and the their roughly covered frequency

ranges.

Figure 2.2: Operating frequency ranges of detectors. Adapted from [119] Page 213.

For any measurement system, propagating electromagnetic waves are necessary.

For very low frequency, the applied current flows in the conductors and the electro-

magnetic waves propagate along the conductor, such as wires and cables. In the kHz

and MHz range of frequencies, coaxial cables are widely used. The sizes of coaxial

cables varies depending on the different application range of frequencies. Recent

progress has made coaxial cables available up to 100 GHz. In the microwave and

millimeter wave range, striplines and waveguides are generally used to propagate

39



electromagnetic waves. From the infrared through the visible up to the ultraviolet

spectral range, the electromagnetic waves is transmitted like visible light, via free

space or in optical fibers.

Although the structures guiding the electromagnetic waves differ very much, the

general principles of wave propagation are always the same. As far as wave propa-

gation is concerned, all structures and even free space, can be discussed within the

concept of transmission lines. Maxwell’s equations can fully describe the propaga-

tion of electromagnetic waves in a transmission line. However, it is not necessary

to actually solve the wave equations with the boundary conditions each time. The

more convenient and commonly used characteristic parameter is the impedance Ẑ.

With the impedance Ẑ the wave propagation can normally be discussed in a manner

independent of the particular guiding structure.

At different parts of the electromagnetic spectrum, the measurement methods,

the hardware and the means of propagation of the electromagnetic radiation are dif-

ferent. One way to classify the different measurement methods is from the interac-

tion of electromagnetic radiation with the material under study. Through this point

of view all the different methods can be classified into three categories: single-path

method, interferometric techniques and resonant techniques.[119] For each category,

the system setup differ depending on the detected frequency.

The name of ”Single-path” itself tells us this method light interacts with matter

only once and the experiment samples the change of the electromagnetic wave. For

example, the light is reflected off the sample surface or transmitted through the

sample. Normally some of the radiation is absorbed. Then from the quantity that

is absorbed the properties of the material can be determined. This simple method

can determine the phase change of the radiation and the attenuation in power due

to the interaction. However, only at low frequencies(i.e. at long wavelengths) can

the phase change be obtained. For higher frequencies, we can only determine the

attenuation in power.
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Interferometric techniques compare one part of the radiation, which undergoes

interaction with the material(i.e. reflection from or transmission through the mater-

ial), with a second part of the signal, which serves as a reference.[119] This definition

tells that the interferometric technique is a comparative approach. Then the mutual

coherence of the two compared radiation beams is crucial. Through this method,

the complex response of the sample can be determined since the interference of two

beams is sensitive to both the change in amplitude and in phase upon interaction.

Another technique is the resonant technique, which has very high sensitivity.

For this technique the electromagnetic waves interact with the material multiple

times and the electromagnetic fields are established inside a resonant structure. By

observing the two characteristic parameters of the resonance, i.e. the resonance

frequency and its quality factor, both the real and imaginary components of the

electrodynamic response of the sample can be determined.

All methods mentioned above have advantages and disadvantages. Resonant

techniques have very high sensitivity due to the multiple interactions with the sam-

ple. The quality Q can characterize the sensitivity. Normally for a resonant structure

of quality Q, the electromagnetic radiation bounces approximately Q times from the

surface of the sample. So higher Q brings higher sensitivity. The cost of the high

sensitivity is a narrow bandwidth. The resonant techniques is not a broadband

technique. Compared to the resonant technique, the single-path and interferometric

techniques have lower sensitivity, but they are both broadband techniques, which

means they can investigate the properties of samples over a wide frequency range.

If there is a significant change in the measured parameters, single-path arrange-

ments are preferred due to its simplicity. Interferometric techniques offer increased

sensitivity and precision, but normally are more complex and expensive to produce.

Of course, the different path arrangement can be combined sometimes. This

gives rise to a variety of measurement arrangements. Here as a brief summary, I am

not able to discuss everything in detail. The relevant knowledge can be found in
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many books, such as[119].

2.2 Impedance Measurement in the Microwave

Frequency Range

Surface impedance measurements at microwave frequencies have provided important

information about the fundamental properties of the superconducting state. The

microwave penetration depth measurements on single crystals have provided impor-

tant evidence in the effort to determine the symmetry of the order parameter in high

Tc materials. Microwave measurements also provide a very stringent test of sample

quality, and therefore are helpful for improving the quality of these materials, and

are important to separate intrinsic and extrinsic effects in these complicated mate-

rials. In addition to the fundamental aspects, microwave measurements can also be

used to help develop a general phenomenological picture of superconductivity in the

absence of a fundamental theory.[93]

Another reason to focus on the microwave properties of superconductors comes

from their applications. Since the discovery of HTSC materials, the possibility of

obtaining superconductivity in the liquid nitrogen temperature range has excited a

series of commercial applications because of their relatively low cooling cost. One

significant application of HTSC is in the area of microwave passive components, i.e.

resonators and filters. Compared with devices fabricated from normal metals, HTSC

devices have lots of advantages, such as lower rf-losses, and smaller denser circuits

for a given performance. HTSC material can also form the basis of highly sensitive

IR sensors and be used as magnetic shielding.[121] Another application of HTSC is

to make high-field magnets. Whereas the Hc2 of HTSC is large, current available

commercial HTSC magnets generate only 1T of magnetic field. A clear picture of

the properties of HTSC near Tc is required for the application of high field magnets
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within the liquid nitrogen temperature range. Microwave surface impedance mea-

surements are important for us to address this issue, to get a deep understanding of

the HTSC material, and finally to utilize these materials for applications.

Most of the conventional microwave measurements of the surface impedance

use resonance techniques. As we already mentioned, the resonant techniques can

provide a very high sensitivity of the surface impedance as a function of parameters

such as temperature or magnetic field, but they are not broadband and are limited

to at most a few discrete frequency points, and therefore can not provide much

information on how the surface impedance varies with frequency. Sometimes the

frequency dependent properties are required, for example the behavior of a system

at many different frequencies will provide a much more stringent test of a theoretical

model.

Broadband measurements take non-resonant techniques and typically measure

the transmission or reflection of a microwave signal incident on the sample. The

measured quantity is typically a voltage, not a frequency, thus broadband measure-

ment are normally much less sensitive than high-Q resonant measurements. Besides

in order to accurately measure both the real and imaginary parts of the response,

one must use phase-sensitive measurement techniques, which become increasingly

more difficult as the measurement frequency increases and the signal wavelength

becomes much smaller than the measurement apparatus.[93] However, since they

do not use a resonant mode, there is much more freedom in choosing an operating

frequency in these experiments.

The early microwave transmission measurements on superconductors employed

the wave guide method, and some of the most important work were carried out

by Glover and Tinkham.[122] The measurement system described in my work is

different from the waveguide transmission measurements. This techniques is called

the Corbino reflection technique[92], which can measure the complex reflection co-

efficient from 10 MHz to 50 GHz of a thin film which forms an electrical short
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across a coaxial transmission line.[93] The Corbino reflection technique uses a swept-

frequency method and directly measures the full complex resistivity or conductivity

of a thin film as a function of frequency. The measurement utilizes coaxial tran-

mission lines, which support the transverse electromagnetic(TEM) mode up to ap-

proximately 70 GHz, and all the way down to dc because of the absense of a lower

cutoff frequency for the TEM mode. Hence the system covers a very large range

of frequency including the radio frequency, microwave and millimeter wave range.

The use of the TEM mode also results in a relatively simple field distribution within

the thin film sample. Also, for the geometry used here, the measured reflection

coefficient is simply related to the complex resistivity of the sample. The detailed

introduction of the Corbino technique will be given in the next section.

2.3 Experimental Setup of the Corbino Reflection

Measurement

2.3.1 Advantages of the Corbino Geometry

The measurement employs a network analyzer to measure the complex reflection

coefficient Ŝ11 of a thick film which forms a Corbino geometry at the end of a

coaxial cable. Fig. 2.3 shows the scheme of the Corbino geometry. At the top of

the coaxial cable, we indicated the high frequency electric field(full arrows) and the

magnetic field(dashed circles). At the bottom, the shaded area is the Corbino disk

formed on the sample, with the current shown as full arrows.

The measurement takes advantages of the Corbino geometry. Fig. 2.3 shows

that in such a Corbino disk the currents in the film flow in the radial direction, so

produce magnetic fields only in the azimuthal direction parallel to the surface of

the film. Through the Corbino geometry the edge effects of the film are effectively

reduced compared to a rectangular or micro-bridge geometry. As for the latter two
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Figure 2.3: Scheme of the Corbino geometry.

geometries, the current will make the self fields perpendicular to the surface, partic-

ularly at the edges. The virtue of the Corbino geometry is particularly important

when studying the motion of magnetic vortices in the mixed state of superconduc-

tors, since without perpendicular self magnetic field, which normally comes from

sample edges in other geometries, there is much less contribution to the creation

and/or pinning of vortices.[124] An additional advantage of the technique is that it

allows for the surface impedance to be determined over a wide range of parameters,

including temperature, magnetic field, frequency, rf power and dc bias current.[93]

2.3.2 History of the Corbino Technique

The Corbino geometry was historically used for dc transport measurement.[123] The

Corbino reflection measurement technique developed out of this virtuous geometry.
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N. Bluzer and collaborates built their transient photoimpedance response (TPR)

apparatus using the Corbino geometry and measured time-domain picosecond qua-

siparticle dynamics of superconductors in zero field.[125] Their basic technique has

been adapted to the frequency domain. James Booth, a former student of our group,

developed the Corbino reflection technique and studied vortex dynamics and fluc-

tuation conductivity in high Tc superconducting YBCO thin films.[92, 91] With the

same setup, Andrew Schwartz, a former post-doc in our group, studied the local

magnetic behavior of single-crystal La0.8Sr0.2MnO3 and investigated the critical

behavior of the ferromagnetic phase transition.[126]

Exploiting the relative temperature independence and frequency stability of

nichrome thin films M. Stutzman et al. at the University of Virginia proposed a cali-

bration method for a long, lossy microwave transmission line with three standards in

a cryogenic system, at temperatures down to 100 mK.[128] This procedure requires

excellent reproducibility of the cryogenic conditions. Marc Scheffler et al. in Ger-

many, compared further calibration schemes based on just a single low-temperature

calibration measurement or employing a superconducting sample as a calibration

standard for its normal state and applied their spectrometer to study thin films of a

heavy-fermion compound.[127] H. Kitano et al. in Japan, also investigated the effec-

tiveness of different calibration methods for Corbino setup and with their system,

they studied dynamic microwave conductivity near Tc for La2−xSrxCuO4(LSCO)

thin films with x = 0.07 to 0.16.[112]

Although a lot of work has been done to improve the calibration at cryogenic

temperature, there is still no widely accepted calibration standard in this small

community. The reason is partially due to the fact that complete reproducibility is

very hard to achieve. In addition, these measurement systems are extremely sensitive

to outside perturbations. It makes the choice of a calibration method dependent on

the particular setup and the research objectives.
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2.3.3 Our Experimental Setup

Schematic of the system

A schematic diagram of our experimental setup is shown in Fig. 2.4. The whole

experimental setup includes a cooling system, a control and measurement system

and the main part, a cryostat, in which the Corbino probe and the sample are

located.

Experiment
Setup

PNA

Computer

DC current 
source

and voltmeter

Temperature
Controller

Helium

Pump

Pump

Microwave measurement on YBCO thin films

Helium flow

Coaxial cable

Sample
inside

Vacuum Shroud

Janis continuous
flow cryostat

Figure 2.4: Schematic of the Corbino experiment setup on YBCO measurement.

The cryostat can be viewed as two parts. One is the bottom shroud, where the

sample is located and measurements are carried out. The other one is a cold finger
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extending from the top to the position of the sample, where it is used to cool the

sample. The two parts are vacuum insulated from each other.

The shroud has large openings on the front side and two smaller openings on

the sides. These openings make it convenient to operate inside the cryostat, such

as assemble parts, positioning samples and making calibrations at room tempera-

ture. On the backside of the cryostat, our home-made co-axial cable connects the

sample and the measurement instrument. For the low temperature measurement,

the openings of the cryostat will be covered and the cryostat can be pump down

through the valve on the top. The temperature inside the cryostat is controlled by

the LakeShore 340 temperature controller.

The cooling system includes a cryoliquid transfer tube and a pump. One end

of the cryoliquid tube transfer is put in the Helium dewar, the other end is put in

the cold finger of the cryostat. The pump and some valves constitute a pumping

station, which can keep a stable pressure (less than 1 atm) in the colder finger of

the cryostat. Then a continuous helium flow from the dewar to the cryostat cold

finger can be formed. That is how the system is cooled down. Through adjusting

the valve of the transfer tube and the pressure, we can control the cooling rate as

well as the stable temperature of the system.

A home-made co-axial cable connects the sample with the PNA microwave net-

work analyzer (NWA). A DC current source and a voltmeter are also used here.

They are connected through the network analyzer and coaxial cable to the sample

and therefore offer a way to measure the resistance of the sample (plus those of

the contacts and wires) in a two-point-measurement. GPIB cables connect all the

instruments with a computer, so they are easy to control and program for measure-

ment. The control software was written by Labview in Windows operation system.

The software automatically monitors the sample temperature and its stability. Our

system has pretty good temperature stability, which can stay at the preset temper-

ature with less than 0.005 K offset. Once the sample stables and satisfies the pre-set
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condition, the software will control the PNA to the required status, and collect data

automatically. The collected data will be organized and processed, then be saved to

the assigned files. The above processes can be automatically repeated for different

incident microwave powers and temperatures.

Coaxial cable sample interface

A detailed diagram of the coaxial cable/film interface is shown in Fig. 2.5. This

is the core part of the whole set up. We employ a vector network analyzer, the

Agilent E8354B PNA, to measure the complex reflection coefficient Ŝ11 of the thin

film sample. One end of the coaxial cable is connected to the PNA, the other end

is connected with the sample, which is shown in Fig. 2.5.

A direct electrical connection is made between the outer contact of the film and

the outer conductor of the connector while the contact between the inner contact of

the film and the inner conductor of the connector is made through a spring-loaded

small pin which is inserted into the connector center conductor. A pedestal applies

pressure to maintain contact through a spring which is assembled with the pedestal.

Here we try to minimize the contact resistance between the center conductor and

the sample. Actually, stability as a function of temperature is more important, and

normally, a small contact resistance comes together with stability. Through this

method, the contact resistance can be maintained within the range of 30 mΩ (which

gives a contact resistivity of approximately 5×10−5Ωcm2) in the entire temperature

range, 70K to 300K.

Some improvements made to the Corbino Apparatus

The Corbino system in our lab was first designed by James Booth, a former student

of our group. To make the system fit to my project, I made some modifications and

improved the system performance.

One of the most important improvements is that the new Agilent E8364B PNA
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Z0

Figure 2.5: (a)Top view of the sample; (b)Cross section view of interface of sample

and connector(not to scale). (To show the interface clearly a gap between the sample

and microwave connector has been created)

replaced the old HP 8510C NWA. This new PNA offers greater flexibility and con-

venience for the measurement. The detailed advantages of the PNA over the 8510C

NWA can be found from their manuals and the Agilent websites. Here I just men-

tion some crucial ones for our experiment. First, the PNA offers a new electronic

calibration method as well as the old mechanical method. Second, the PNA offers

a distribution of equally-spaced measurement points in a Log-scale of frequency as

well as in a Linear-scale, which gave us more data points at low frequencies for

broadband measurement. This is particularly useful for looking at power-law-in-

frequency dependence in my data. Third, the PNA offers a convenient instrument

state recall function and fast data collection rate, which allowed investigation of

properties depending on other parameters, such as microwave power.

Fig. 2.6 shows the electric calibration kit, called Ecal, which can create open,

short and load standards electronically. The electronic calibration is superior to

mechanical calibration. For example, it requires only one mechanical connection of

connectors to finish a calibration. The fewer connecting of the calibration kit helps
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Figure 2.6: The Agilent N4693A MW electronic calibration (ECal)

to protect the coaxial cable and extend its life time. Actually one connection can be

used for more than one calibration. This reduces the reproducibility problem when

we want to investigate properties depending on other parameters, such as different

power. Most important, Ecal is more accurate and allows better calibration and

better sensitivity for the measurement.

The Ecal module could not be fit inside the original cryostat of the Corbino

setup, which is a Janis ST100. So I designed a new shroud which has larger inside

space and big openings on the front side. These allows the Ecal module to fit inside

and also makes the preparations for the experiment more convenient. In addition
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the larger inside space also makes some upgrades possible, such as adding new

apparatus. For example, I have designed a magnetic shielding system which can

fit inside the shroud. The magnetic shields are specially designed for our Corbino

probe and shroud, and are made by the Amuneal company. This magnetic shielding

system includes a top-part and a bottom-part, which can be buckled together. There

are small holes on the bottom-part, through which the coaxial cable can connect

the sample and the PNA. Both top-part and bottom-part include three layers. It

effectively decreased the external magnetic field by about 80dB. The magnetic shield

also have some EMF shielding effect and reduced the noise of the measurement. In

addition. it reduced thermal radiation and improved the thermal stability of the

system. The thermal stability is important for our experiment. To improve it, I

added some thermal links from the sample stage to the cold finger.

2.4 Calibration—-Room Temperature

Since the measurement is performed not directly at the location of the sample, in

practice the detector is normally connected with the sample through co-axial cables

and connectors etc. The experimentally measured reflection coefficients includes the

attenuation, multiple reflections and phase shift due to the coaxial cable system.

The model, shown in Fig. 2.7 can be used to describe any microwave reflection

measurement with any number of error sources according to microwave network

theory [129]

In the Fig. 2.7, Ŝsample
11 is the actual reflection coefficient at the sample (the de-

sired quantity) whereas Ŝmeasured
11 is the measured reflection coefficient at the detec-

tor. Here ED, ER and ES are complex error coefficients representing the directivity,

the reflection tracking and the source mismatch, respectively. A general expres-

sion for the measured reflection coefficient Ŝmeasured
11 in terms of the actual reflection
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Figure 2.7: General Error model for a microwave reflection measurement

coefficient at the sample Ŝsample
11 is

Ŝmeasured
11 = ED +

ERŜ
sample
11

1 −ESŜ
sample
11

. (2.1)

From Eq. 2.1, the error coefficients can be determined by measuring the S11

of three different known loads. The normally used standards are open, short and

matched load.

In our experiment, a room temperature calibration is performed first to deter-

mine initial values for the complex ED, ER and ES as functions of frequency. Our

Corbino probe is fabricated from a commercial microwave connector, the Anritsu

V101F . At room temperature it can be calibrated with the appropriate commercial

calibration standards.

Previously we used the Agilent 85056A 2.4 mm mechanical calibration kit for

the room temperature calibration. The 85056A mechanical calibration kit includes

a short(Z ∼= 0), an open(Z ∼= ∞), and a matched load(Z ∼= 50Ω corresponding to

the characteristic impedance of the coaxial cable). The short and open can be easily

realized to high accuracy in the whole frequency range. However, it is much harder

for the matched load, particularly for high frequencies. Therefore two different kits
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are used as the matched load: for lower frequencies(DC to 4GHz) a broadband load

is used and for higher frequencies a sliding load is employed.

With the development of the electronic industry, Agilent developed a new gener-

ation of electrical calibration standards, called Ecal. It can simulate different stan-

dards open, short and matched load electronically under control of the computer.

One need connect only one standard to the connector, then start the calibration

with Ecal, the Agilent 8364B will automatically control the Ecal through a USB

port, complete the calibration and save the error coefficients. Since every calibra-

tion requires only one connection, it decreases the error due to lack of connection

reproducibility. The ideal values for ED, ER and ES are 0, 1 and 0 respectively.

Fig. 2.8 gives the magnitude of the three error coefficients, ED, ER, ES, obtained

from the Ecal at room temperature. It shows that all three error coefficients are

close to their ideal values at low frequency and deviate from the ideal value at high

frequency. ER has some frequency dependence, which decreases as the frequency

increases. As for the ED and ES, they do not have a clear frequency dependence.

The presently performed electrical calibration is superior to mechanical cali-

brations used in our prior work.[92, 91] After the room temperature calibration,

standard open and short connectors are put back to check the calibration quality.

In the entire frequency range from 10MHz to 50GHz, after calibration the obtained

|S11| for both standard open and short connectors differ from 1 by less than 0.2dB.

In particular for the frequency range from 30MHz to 20GHz, |S11| measured for

standard open and short differ from 1 by less than 0.05dB.

After the calibration, we insert a center pin into the connector and assemble it

in a copper housing, inside of which the sample will be placed and measured. To

check the calibration, we measured a silver disk after calibration. Fig. 2.9 shows

the result of the silver disk measurement. Here the measured S11 should be close to

the standard open with |S11| = 1 and Phase(S11) = 0(also can be seen as π). From

Fig. 2.10, we found that |S11| only slightly differ from 1. However the Phase(S11)
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Figure 2.8: Magnitude of the error coefficients vs. frequency.
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is different from zero and their difference systematically increase as the frequency

increases. This behavior could be due to the fact that during the measurement on

samples, a tapered pin is used to make contact between the center conductor of

the V101F connector and the sample,(shown in Fig. 2.5) whereas a 2.4 mm male

connecector is utilized to couple to the modified V101F connector when performing

the calibration. The response shown in Fig. 2.9 has been generally seen in a number

of different bulk metallic samples. However, we noticed that the reflection coefficient

magnitude is close to its expected value in most of the frequency range. Particularly

|S11| − 1 < 0.005 from 10 MHz to 20 GHz. There are some peaks at high frequency,

which are perhaps due to the higher order mode excitations at the pin.

Fig. 2.10 shows the magnitude and phase of S11 just after we assemble the pin

and the housing. Here we see the measured S11 is close to the standard open

with |S11| = 1, but the Phase(S11) = 0 differs from zero and the difference also

systematically increase as the frequency increases. This feature comes from the fact

that the different connection for performing calibration and the measurement. Note

here the magnitude of reflection coefficient is within 2% of its expected value over

the entire 3 decades of frequency, in particular |S11| − 1 < 0.006 from 10 MHz to 20

GHz.

2.5 Calibration at Cryogenic Temperature – Stan-

dards

In many situations, we are interested in sample properties at cryogenic tempera-

ture. The previous section explained that the coaxial cable connects the sample

and the test instrument PNA, which is always at room temperature. When mea-

suring sample properties at cryogenic temperatures, there is a temperature gradient

in the coaxial cable, which changes along with the sample temperature. At least
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Figure 2.9: Magnitude and phase of S11 vs. frequency for a silver disk after calibra-

tion.
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inserted and the house is assembled after calibration.
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part of the cable is at low temperature, which also changes along with the sample

temperature. The temperature change of the transmission line affects its electrical

properties and this results in change of attenuation constant α and phase constant

β etc.[130] Because of the temperature dependent electrical properties of the trans-

mission line, the variation of the sample temperature affects the accuracy of the

room-temperature calibrations. So a low temperature re-calibration is necessary for

the cryogenic temperature measurement.

In principle, the low temperature re-calibration procedure is similar to the above

room-temperature calibration. However, both the commercial mechanical standards

and the Ecal are designed for use only around room-temperature. In addition the

center pin used when measuring sample made another problem for using commer-

cial standards. Thus independent calibration standards have to be used at low

temperature.

Basically the low temperature re-calibration is to re-calculate the error coeffi-

cients from measured Ŝ11 with one or more standards that work well at low tem-

perature. Historically there are two calibration methods: short-only and three stan-

dards. The short-only standards originated with former students of our group, James

Booth, who had developed the Corbino reflection technique.[92, 91] The three stan-

dards calibration method was proposed by the Brom group at Leiden University

(Leiden Group) and M. Stutzman et al. at the University of Virginia (Virginia

Group). In spite of the different re-calibration methods, the core ideas are the

same, choosing appropriate standards that work well at low temperature. Here I

will introduce each low temperature standard first.

2.5.1 Low Temperature Standards: Short

The standard short should perfectly reflect all the incident electromagnetic waves.

It can be realized by using bulk metals with thickness much larger than the pen-
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Figure 2.11: Magnitude of the reflection coefficient of a superconducting YBCO film

on NGO substrate and silver disk at 80 K

etration depth. Normally high conductivity bulk metal, such as silver, copper and

aluminum can be chosen as ideal standard short. Because of their high conductivity,

the penetration depth is much smaller than the thickness and the ideal reflection

coefficient Ŝ11 should be −1. In principle, if the roughness of the surface is much less

than the wave length, which always holds for our experiment, it should not make

any difference for the reflection coefficient. One concern is that the surface of the

standard should be flat and the two surfaces of the standard should be parallel to

each other. In our experiment, to reduce the contact resistance, we use a polished

silver disk as a standard short.

In our work, we are interested in properties of superconductors. At low tem-

peratures below TC , the sample becomes superconducting, which gives another way

to perform a short circuit calibration. Superconductors have no resistance at zero

frequency. For high frequencies the conductivity become finite and vanishes for fre-

quencies below the energy gap at T = 0. In many cases the detailed frequency

dependence of the microwave conductivity of superconductor is unknown, however,
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the two fluid model can give some estimation when ωτn � 1 for temperature be-

low Tc, where τn is normal electron relaxation time. From the two-fluid model

σ1 = t4/ρn(T ) and σ2 = (1 − t4)/μ0ωλ
2
0, here t = T/Tc, the actual Ŝ11 at a certain

temperature can be calculated. We find the calculated Ŝ11 below Tc has very little

difference from the perfect short Ŝ11 = −1, so it is safe to use a superconducting

film well below Tc as a perfect short. For maximum accuracy, we also compared the

reflection coefficient of a bulk metal and the superconducting film at low tempera-

ture. Fig. 2.11 shows the magnitude of Ŝ11 for a 1500Ȧ thick YBCO film on NGO

substrate and a bulk silver disk at 80 K as well. The response of the SC film is nearly

identical to that of a bulk disk conductor at 80K from 10 MHz to about 30 GHz and

therefore should be appropriate to use as a short standard. At higher frequencies,

they do show a difference. However, this difference comes from the irreproducibility

of the center pin connection because the Ŝ11 is very sensitive to the connection at

very high frequency. At very high frequency, the |Ŝ11| > 1, which is due to resonant

and unphysical.

2.5.2 Low Temperature Standards: Open

The easiest way to realize an open standard is to measure the probe without any

thing attached. However, there is a spring-loaded center pin in our probe, which

will protrude from the probe if we do not attach anything. As a result it is hard

to tell the microwave characteristics of such a probe. Hence during the calibration

measurement of the open standard we have to keep the center pin as close as possible

to the place where we measure the sample. To do this a piece of a solid insulator can

be used to push the center pin and prevent it from protruding out of the place where

we measure the sample. However, this creates a new problem. Fig. 2.12 shows the

amplitude of the measured reflection coefficient Ŝ11 for three states which are: i) the

microwave connector only, ii) with center pin inserted and copper housing assembled,
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and iii) fused silica sample, respectively. We can see that when the center pin is

inserted and the copper housing is assembled, there appear the two peaks around 22

GHz and 37 GHz, which are due to higher order mode excitations. The operating

frequency of the coaxial transmission line is below the cutoff of any higher order

modes in the coax, so that only the TEM mode (which has no cutoff frequency)

can propagate. However, higher order modes can be excited at the location of

any discontinuity in the transmission line and can make some contribution to the

reflection coefficient in these regions.[93] When the insulating sample is attached,

there appear more dips and they move to lower frequencies.

Stutzaman et al. first proposed using a fused silica disk as a standard open.[128]

Following this proposal, I experimentally checked different insulators as standard

opens. All samples have higher order mode excitation, which makes them an im-

perfect open. Fig. 2.13 shows the amplitude of Ŝ11 for fused silica, sapphire and a

teflon disk. For smaller dielectric constant, the first higher-order mode excitation

happens at higher frequencies. Hence a teflon disk is used for the standard open

because of its small dielectric constant and low loss tangent.

2.5.3 Low Temperature Standards: Load

For the third calibration standard, a known load, a NiCr film can be used because

of its temperature-independent conductivity. It was first proposed by Stutzman et

al. of the Virginia Group. They use a NiCr film deposited on fused silica disk

substrate as a known load. For a metallic film on an insulating substrate, if the

film thickness is much less than the skin depth for the frequencies of interest, then

the sheet resistance is governed by the thickness and the conductivity, which can

be considered as frequency-independent and real in the microwave frequency range

for a normal metal. The used a NiCr alloy of 80% Ni and 20% Cr, which is a well

established commercially available material with almost temperature-independent
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Figure 2.12: Amplitude of measured reflection coefficient for i) microwave connector

only, ii) with center pin inserted and copper housing assembled, and iii) fused silica

sample, respectively. (The case microwave connector only means the status that

there is only the microwave connector and no center pin inserted and no copper

housing assembled. See Fig. 2.5. Case ii) means we inserted the center pin and

copper house assembled. Case iii) corresponds to the regular measurement, for which

the sample stays on a copper pedestal and is pushed tightly with the microwave

connector.)
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Figure 2.13: Amplitude of measured reflection coefficient at room temperature after

calibration for different attached insulators: teflon, fused silica, sapphire and NGO

substrate, respectively.
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electrical conductivity. The impedance of a normal metal can change by more than

80% when cooled from room temperature to liquid helium temperature. However,

the NiCr film will keep its same value of impedance. The NiCr films for my experi-

ment are deposited on fused silica through the normal thermal evaporation method.

A NiCr film is a good choice as a known load. It is necessary to establish

the thickness to use for the film. For a general calibration procedure the desired

matched load should have an impedance of 50 Ohms. This makes the extraction of

error coefficient very easy. However, with the development of computers, the error

coefficients can be obtained for only choice of three distinct standards, from Eq. 2.1.

In our experiment, we choose relatively thicker films as load standards. There are

three reasons for this choice.

Firstly because part of the microwave signal will penetrate the film and enter

the substrate, and reflected wave from the substrate can pass the film again and

contribute to the measured microwave signal. For most frequencies this will not af-

fect the validity of the calibration scheme presented here. However, there are some

dips in Ŝ11(ω) at high frequency, which are due to excited higher order mode con-

tributions. These dips reduce in magnitude as the film thickness increases, because

a smaller fraction of the signal can penetrate through the NiCr film.

Secondly it is hard to growth the very thin film uniformly distributed on the

substrate. A relatively thick film is more uniform. Besides the very thin film is

easily scratched, affecting its impedance.

Thirdly, because we intend to measure surface conductivity of YBCO samples,

which have very small surface impedance particularly at low temperature. The

surface impedance of the calibration standard close to the sample will increase the

accuracy of the measurement.

Since the impedance of the load differs from 50 Ω, we need to know its actual

value. One method to determine the sheet resistance of the NiCr film is to get the

resistance in a standard 4-point measurement as a function of temperature and then
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calculate its impedance for the Corbino geometry. This is most precise, however, it

is rather arduous. The alternative way is to measure the dc resistance of the NiCr

film with the Corbino setup. This is a two point measurement and the obtained

resistance includes an offset, which comes from the resistance of the coaxial cable and

the contact resistance between the connector and the film. I subtracted the offset

from the measured dc resistance, then take the resulting value as the true impedance

of the film. The disadvantage here is that the offset is poorly defined, can change

up to 0.1 Ohm for different measurements and the difference can not be determined

through this procedure. In the real measurement, we take the measured dc resistance

of the short standard as the offset. Also we noticed that at low frequency(below

100MHz), the calibration has little temperature dependance. Hence we can extract

the impedance of the NiCr film from the Ŝ11 at low frequency, which should be the

same as the dc resistance. In the experiment, we usually compare the extracted

resistance from the low frequency Ŝ11, the resistance coming from the two-point

measurement and the calculated resistance from the four point measurement result.

They are normally consistent with each other. The average value can then be used

as the actual load for the re-calibration.

Except for the normally used NiCr film, other materials can also be used as a

known load. For example, the optimally doped superconductor well above Tc is a

conductor just like normal metal, which may be used as known load. However, the

substrate contribution makes the impedance complex, and we will discuss this in

later sections.

2.5.4 Cryogenic Re-calibration Methods

Three standard re-calibration

In the last section, we introduced the three different standards, short, open and

known loads. These standards work effectively at low temperatures and their per-
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formance is basically the same as the room temperature ones. From the test results

of the three different standards, assuming the actual reflection coefficients of these

standards are ideal ones, we can calculate the error coefficient ED, ER and ES for

each frequency at different temperatures. This is the normal three standards re-

calibration method, which was first proposed by Stutzman et al. The procedure can

be found in [128].

The normal three standards re-calibration method have a variation. First per-

form an Ecal calibration at room temperature. Then measure the response of the

three new standards at room temperature. After that, meausure the three new

standards at low temperature. Now re-calculate the ED, ER and ES coefficient to

make the low temperature response of the three new standards equal to the room

temperature response. Hence we can calibrated the error coefficients for the low

temperature. This is a modified three standards re-calibration method, which was

proposed by the group of Mark Lee at Virginia. For reason of comparison, we tried

this varied three standards re-calibration procedure for some of our data. We found

that this method is not as good as the the standard three standard re-calibration

method.

One standard re-calibration – short only

Using three calibration standards at low temperature is the most general procedure

which gives a guideline for the validity of all other calibration methods. We have

already seen in the room temperature calibration of Fig. 2.8 the magnitude of ER

is much larger than that of ED and ES. The three standards re-calibration shows

that ER is strongly temperature dependent, whereas ES and ED have much less

temperature dependence. The strong temperature dependence of ER can be ex-

plained by the changing attenuation of the copper coaxial cable that governs most

of the damping of the microwave signals. The strong temperature dependence of

ER confirms the need for good temperature control and reproducibility.
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Compared to ER, the other two error coefficient ED and ES change very little

with temperature. Considering the uncertainties of them, their temperature depen-

dence is not significant. The small temperature dependence of ES and ED makes

the short-only re-calibration method possible. In the short-only method, we assume

that the temperature dependence effect is due to ER alone whereas ES and ED are

temperature independent. So from the measured result of the short standard, the

ER is re-calculated for low temperature.

Other re-calibration methods

There are also other calibration methods. For example, if we arbitrary choose two

standards, we can assume one error coefficient does not change and re-calibrate the

other two. The normally used standards are open and short, which are easier to

make and relatively more accurate than the known load. With two standards, we

can re-calibrate two error coefficient, usually ER and ED. Since ES is referred to as

the source match, which arise due to the re-reflection of a portion of the signal at the

measurement port, caused by the slight impedance mismatch between the detectors

and the transmission line.[129] Our detector is always in room temperature, hence

ES can be considered to have very little dependence on temperature.

Comparison of different re-calibration methods

We have introduced the different re-calibration methods. Among these methods, the

normally used one are three standards re-calibration and short-only re-calibration.

Marc Scheffler et al. compared these two calibration methods in detail.[127] Ac-

cording to their work, if we have a standard short, open and load and perfect

reproducibility, the general three standards calibration method is ideal.

However, the existing higher order modes excitations at the high frequency range

make the open and load used at low temperature deviate from the standards behav-

ior. Compared to the standard open and load, the standard short is less affected
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by the high order modes excitation. This is an advantage of the short-only re-

calibration method. The second advantage of short-only re-calibration is that this

method decreases the affects of irreproducibility. The short-only calibration method

requires only one low-temperature calibration measurement instead of three. In this

case the time for the calibration is reduced and the possible irreducibility due to op-

eration is also reduced. In addition, the room-temperature calibration might change

along with time. The shorter necessary time between calibration and measurement

can reduce this error considerably. The other advantage of short-only re-calibration

is its convenience.

Considering these problems, although the three standards re-calibration method

is an excellent general calibration method, it is better to be treated as a starting

point and serve as a guideline for other calibration methods. Comparing the short-

only re-calibration and the three loads re-calibration methods, we found that the

results from the two methods usually coincide with each other for low-impedance

samples, such as superconductors. Thus for samples with small impedance over the

complete frequency range of interest, the short-only re-calibration method is often

used due to its convenience.

For our measurement, the YBCO samples have very small impedance in our tem-

perature and frequency range of interest. Hence we used the short-only re-calibration

for most of our measurements. In our experiment, we also took measurements on

standard open and load at low temperature for reasons of comparison.
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Chapter 3

Theory of Superconducting Fluctuation

Effects

Over the years the basic theoretical understanding of superconductivity has been

developed in a series of stages. Our experiment is based on these theoretical foun-

dations. In this chapter, I will present some theory basic for my work. This is

not intended to be a deep discussion, but rather to serve as an introduction to the

relevant theoretical background.

3.1 Ginzburg-Landau Theory

I have briefly introduced the Ginzburg Landau theory in chapter 1. In GL theory,

the free energy density is given by[15, 17, 16]

fs(T ) = fn(T ) + α|ψ|2 +
β

2
|ψ|4 +

�
2

2m∗ |(
�

i
∇− q∗A)ψ|2 +

μ0H
2

8π
(3.1)

where fn(T ) is the normal state free energy density at temperature T in zero field,

and α and β are material parameters. Near Tc, β is a positive constant approximately

independent of temperature and α changes sign at Tc. A is the vector potential.

The system will be in equilibrium when the free energy is minimized. Using the

variational method we find that in zero field the free energy will be a minimum
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when[15, 17, 18]

− �
2

2m∗α0
T−Tc0

Tc0

∇2ψ +
β

α0
T−Tc0

Tc0

|ψ|2ψ + ψ = 0. (3.2)

Let us look at simple case first, if there is no spatial variations(|∇ψ| = 0), then

fs(T ) − fn(T ) = (α|ψ|2 +
1

2
β|ψ|4) (3.3)

Above Tc, α > 0 and there is a minimum when |ψ|2 = ns = 0. Here fs > fn, which

corresponds to the normal state, thus the density of superconducting electrons is

zero.

On the other hand, at temperature below Tc, α < 0, then the free energy has a

minimum when

|ψ|2 ≡ |ψ∞|2 = −α
β
. (3.4)

This equilibrium value is conventionally called ψ∞. The free energy difference vs.

order parameter magnitude is sketched in Fig. 3.1.

So at Tc0, α must change sign so that |ψ|2 = ns goes to zero as T → Tc0. Here

we can take a Taylor expansion for α around Tc0, to lowest order

α(T ) = α0
T − Tc0

Tc0
. (3.5)

This is strictly true only near Tc0.

Now put back Eq. 3.4 and 3.5 into the Eq. 3.2 and we can obtain the free energy

density around Tc0. For T < Tc0

fs = fn − α2
0

2β
(
T − Tc0

Tc0

)2, (3.6)

and for T ≥ Tc0,

fs > fn (3.7)

It is clear that the superconducting state has a lower free energy density than

the normal state for T < Tc0. The free energy density in the superconducting state

can be written as[19]

fs = fn − 1

2
μoHc(T )2, (3.8)
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0
0

Figure 3.1: The free energy difference when α > 0 and α < 0. If α > 0, then the

equilibrium value is |ψ|2 = ns = 0 (the normal state). For α < 0, |ψ∞|2 = −α
β

in

the superconducting state.

which defines the thermodynamic critical field Hc(T ).1 This is the same Hc(T ) as in

Sec. 1.2, and thus is directly measurable (at least for type I superconductors). The

difference in energy between the normal and superconducting states is called the

condensation energy.2 The condensation energy allows us to make the connection

between the parameters α0, β, and Hc(T ), as

α0
2/β = μoHc

2(0). (3.9)

In order to relate both α0 and β to measurable quantities, another equation is

needed.

We go back to zero field, considering an order parameter that varies in space. For

1Here we use mks units, following Ref. [19] rather than Refs. [15] and [17].

2The condensation energy and the source of this energy can be confusing. See Appendix B of

Ref. [18] for a valiant attempt to sort out the various thermodynamic free energies, or Refs. [15]

and [19].
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this case, ψ(r) will change to minimize the free energy. We can use the variational

method and find that the free energy will be a minimum when[15, 17, 18]

− �
2

2m∗α0
T−Tc0

Tc0

∇2ψ +
β

α0
T−Tc0

Tc0

|ψ|2ψ + ψ = 0. (3.10)

This reduces to Eq. 3.4 for spatially homogenous order parameters, as expected.

Equation 3.10 predicts that changes in ψ occur over a characteristic length ξ.

To see this we substitute

ψ(r) = ψ∞ + δψ(r) (3.11)

into Eq. 3.10 and solve for δψ(r). This leads to the following equations for δψ;

∇2(δψ) =

(
2m∗αo|T − Tco|

�2Tco

)
(δψ) for T > Tco, (3.12)

∇2(δψ) =

(
4m∗αo|T − Tco|

�2Tco

)
(δψ) for T < Tco. (3.13)

These equations can be solved for the general solutions in the one-dimensional case

δψ ∝ e
±x

�
2m∗αo|T−Tco|

�2Tco for T > Tco, (3.14)

δψ ∝ e
±x

�
4m∗αo|T−Tco|

�2Tco for T < Tco. (3.15)

Thus, we can assign the following length scales

ξ+ =

√
�2Tco

2m∗αo|T − Tco| for T > Tco, (3.16)

ξ− =

√
�2Tco

4m∗αo|T − Tco| for T < Tco. (3.17)

Here we identify the correlation length ξ. This is the characteristic length over which

the order parameter ψ is uniform. In a pure superconductor far below Tc, ξ(T ) ≈
ξ(0), which is the temperature-independent Pippard coherence length; however near

Tc, ξ(T ) diverges as (Tc − T )−1/2.

There is another important length in superconductors, called the magnetic pen-

etration depth. Superconductors in a magnetic field below Hc(or Hc1 for type II)
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expel the field from their bulk. This field does not drop to zero suddenly at the

surface, but rather decays exponentially to zero inside the bulk. The decay constant

gives the typical length that fields can penetrate inside a superconductor (hence the

name). The penetration depth is also related to α and β via[19]

λ2 = −β
α

μom
∗

(q∗)2
, (3.18)

where q∗ is the charge of the superconducting particles, and m∗ is their mass.

From the coherence length and the penetration depth, we can define the GL

parameter κ[15, 19]

κ =
λ

ξ
. (3.19)

It was Abrikosov who first noted that the GL parameter separates type I and type

II superconductors. If κ � 1, then the coherence length is much greater than the

penetration depth. This is the case for most conventional superconductors, and

for all type I superconductors. On the other hand, when κ � 1, then the fields

penetrate to distances larger than the coherence length. This leads to magnetic

field penetrating in flux quanta, and type II superconductivity. The switch from

type I to type II occurs at κ = 1/
√

2.

We can combine Eqs. 3.9, 3.16, and 3.18 to determine Hc in terms of measurable

quantities ξ and λ[19]

Hc =
Φo

2
√

2πμoλξ
, (3.20)

where we have set q∗ = 2e. For type II superconductors, the above equation is

not particularly useful, as nothing occurs at the thermodynamic critical field Hc.

However, we can relate the thermodynamic critical field to the measured upper

critical field in type II materials by Hc2 =
√

2κHc[11, 15]. When combined with Eq.

3.20 this gives

Hc2 =
Φo

2πμoξ2
. (3.21)

Near Tc0 we find that

Hc2(T ) ∼
∣∣∣∣T − Tc0

Tc0

∣∣∣∣ . (3.22)
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3.2 Gaussian Fluctuation

GL theory is a mean field theory, which successfully describes the phenomenology of

equilibrium superconductivity. It works well when the order parameter varies slowly

or not at all. However, in any material there are always energy fluctuations on the

order of kBT . For a second-order phase transition, as there is not latent heat, near

Tc the fluctuations can be both large and rapid. The basic GL theory ignores these

fluctuations and can not describe such properties of the system, particularly around

Tc.

In Chap. 1, I have introduced the concept of fluctuation and how fluctuations

affect the properties of the system around Tc. To describe these behaviors, fluctu-

ations have been treated as perturbation and incorporated into GL theory. These

are called ”Gaussian” fluctuations.

In conventional superconductors, the Gaussian fluctuation predictions success-

fully describe the behavior of physical properties of the superconductor, including

diamagnetism, specific heat, and conductivity etc. Here I do not go through the full

derivation of the Gaussian fluctuations, but focus on how the gaussian fluctuations

affect the conductivity near Tc, which is the main concern of this thesis.

3.2.1 Direct Contribution–Aslamazov-Larkin term

Fluctuations create excess conductivity above Tc, also called paraconductivity. Firstly

we consider the excess conductivity attributable to the direct acceleration of the su-

perconducting pairs created by fluctuations above Tc. We assume the normal DC

conductivity is given by

σn =
ne2

m
τ (3.23)

where τ is the mean scattering time of the normal electrons in transport properties,

and n is their number density(per unit volume). By analogy, we might expect the
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superconducting fluctuations to contribute an additional term

σ′ = (e∗2/m∗)
∑

k

< |ψk|2 > τk/2 (3.24)

Here
∑

< |ψk|2 > correspond to the the number density of the fluctuated super-

conducting electrons of all spatial frequencies. The sum over wave numbers k can

be converted to an appropriate integration depending on the dimensionality of the

sample :∫
d3k

(2π)3
for bulk material(3D)

1
d

∫
d2k

(2π)2
for thin films(2D) (thickness d� ξ)

1
S

∫
dk

(2π)
for filaments(1D) (cross-sectional area S � ξ2).

The results are:

σDC
3DAL =

1

32

e2

�ξ(0)
t−1/2 (3.25)

σDC
2DAL =

1

16

e2

�d
t−1 (3.26)

σDC
1DAL =

π

16

e2ξ(0)

�S
t−3/2 (3.27)

(3.28)

where ξ(0) is the coherence length at 0 K, and t = |T/Tc−1|. Moreover, for samples

of intermediate dimensionality, we can interpolate between the above forms and

get the results.For the high-Tc superconductors, because of the layered nature and

strong anisotropy, Lawrence and Doniach created the L-D model for the fluctuation

contribution to the dc conductivity, which essentially interpolates between the 2D

and the 3D forms above.[131]

σfl
LD =

e2

16�dt

1

[1 + 1
t
(2ξc(0)

d
)2]1/2

(3.29)

where here ξc(0) is the c-axis correlation length at zero temperature, and d is the

inter-layer separation. As can be seen from Eq. 3.29, when the c-axis correlation

length is much less than the inter-layer spacing (ξc(0) � d), the fluctuation conduc-
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tivity reduces to the 2D Gaussian expression Eq. 3.26, while in the opposite limit,

when ξc(0) � d, Eq. 3.29 reduces to the 3-D form(Eq. 3.25).

The above results were first derived from the microscopic theory by Aslamzov

and Larkin [55]. The results can also be calculated within the GL theory through

calculation of the dynamical conductivity σω, and then taking the dc limit. This

was done by Abrahams and Woo[41] and Schmid in 1968[42].

In order to calculate the effect of fluctuations of the order parameter on the dy-

namical conductivity, it is necessary to include a time dependence in the Ginzburg-

Landau free energy, since the excess conductivity due to fluctuations will be directly

proportional to the lifetime of the fluctuations. The simplest time dependent gen-

eralization of GL equation(TDGL) neglecting electromagnetic potentials is given

by:

αψ + β|ψ|2ψ − �
2

2m∗∇2ψ = −γ�
∂

∂t
ψ (3.30)

The linearized TDGL equation is then obtained by neglecting the non-linear term

β|ψ|2ψ, and is given by

∂

∂t
ψ = −1

τ
(1 − ξ2∇2)ψ (3.31)

The temperature-dependent relaxation time of the k = 0 mode is given by

τGL =
�γ

α
=
τ0
|t| , (3.32)

where t = (T − Tc)/Tc is the reduced temperature.

From the above formalism, one can calculate the contribution to the conductivity

of superconducting fluctuations. Such a calculation has been carried out by Abra-

hams and Woo[41], Schmid in 1968[42] and later by Dorsey et al.[132] The results

for the fluctuation conductivity (σ = σ1 − iσ2) depend upon the dimensionality of

the system, and are given in three dimensions by:

σ3D
1 = σ3D

DC · F±
1 (ωτ) (3.33)

σ3D
2 = σ3D

DC · F±
2 (ωτ) (3.34)
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Here F±
1 (ωτ) and F±

2 (ωτ) describe the frequency dependence above (+) and below

(-) Tc, and σDC is the dc fluctuation conductivity given by Eq. 3.25.

In three dimensions, the frequency dependent fluctuations F+ are given for T >

Tc by

F+
1 (ωτ) =

8

3(ωτ)2
[1 − (1 + (ωτ)2)3/4 · cos(

3

2
tan−1(ωτ))] (3.35)

F+
2 (ωτ) =

8

3(ωτ)2
[−3

2
ωτ + (1 + (ωτ)2)3/4 · sin(

3

2
tan−1(ωτ))] (3.36)

The frequency dependent fluctuations F− for T < Tc for three dimensions are given

as follow:

F−
1 (ωτ) =

8

3(1 + (ωτ)2)
[
√

2 − (1 + (ωτ)2)−1/4 · {(1 − (ωτ)2) · X + 2ωτY}] (3.37)

F−
2 (ωτ) =

8ωτ

3(1 + (ωτ)2)
[−

√
2 + 2(1 + (ωτ)2)−1/4 · {X − (1 − (ωτ)2)

2ωτ
· Y}] (3.38)

where X = cos[1
2
·tan−1(ωτ)], and Y = sin[1

2
·tan−1(ωτ)]. The fluctuation relaxation

time τ is given by

τ =
π�

16kBTct
(3.39)

In two dimensions the result for the fluctuation conductivity are given by the

following

σ2D
1 = σ2D

DC ·G±
1 (ωτ) (3.40)

σ2D
2 = σ2D

DC ·G±
2 (ωτ) (3.41)

where once again the function G±(ωτ) describe the frequency dependence, and the

two-dimensional dc fluctuation is given by Eq. 3.26, in which d is the film thickness.

The frequency dependent functions G+ for T > Tc in two dimensions are

G+
1 (ωτ) =

1

ωτ
[π − 2 tan−1(

1

ωτ
) − 1

ωτ
ln(1 + (ωτ)2)] (3.42)

G+
2 (ωτ) =

1

ωτ
[−2 +

π

ωτ
− 2π

ωτ
tan−1(

1

ωτ
) + ln(1 + (ωτ)2)] (3.43)
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while the corresponding expressions for T < Tc are

G−
1 (ωτ) =

ωτ

1 + (ωτ)2
[π − 2 tan−1(

1

ωτ
) − 1

ωτ
ln(

1 + (ωτ)2

4
)] (3.44)

G+
2 (ωτ) =

ωτ

1 + (ωτ)2
[π − 2 tan−1(

1

ωτ
) + ωτ · ln(

1 + (ωτ)2

4
)] (3.45)

The fluctuation relaxation time is the same in two dimensions, still τ = π�

16kBTct
.

3.2.2 Indirect Contribution– MT-term

The AL predictions were in good agreement with experiment results on dirty su-

perconductors. However, for cleaner films, the predicted universal behavior failed

to appear. Maki and Thompson investigated the difference between the AL predic-

tion and the experimental results. As for the additional conductivity in the cleaner

case, they proposed that it comes from the indirect effect of the fluctuations on

the quasiparticle conductivity. The direct acceleration of the fluctuation-induced

superconducting pairs corresponds to the AL contribution. These superconducting

fluctuations then decay into pairs of quasiparticles of nearly opposite momenta. By

time-reversal symmetry, the quasiparticles remain in a state of small total momen-

tum even after scattering from an impurity potential, and continue to be accelerated

much as they were while they were a superconducting fluctuation. The quasiparticle

lifetime is limited, however, in several ways, ultimately including decay back into

a superconducting fluctuation, just as the superconducting fluctuation lifetime is

limited by decay into quasiparticles.[51]

The calculation of the indirect(Maki-Thompson) contribution can be found in

many papers. Here I will not go to the detail and derive it but just give the results

as follows [56] [57]:

σ3DMT
DC =

1

8

e2

�ξ0
t−1/2 (3.46)

σ2DMT
DC =

e2

8�d

1

ε− δ
ln(

t

δ
) (3.47)

σ1DMT
DC = σAL

1D 4(t/δ)[1 + (t/δ)1/2]−1 (3.48)
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where δ is the pair-braking parameter introduced to avoid an un-physical diver-

gence of conductivity at T > Tc in the 2D and 1D cases. The MT term explained

a larger magnitude and an anomalous temperature dependence of the fluctuation

conductivity observed in cleaner superconductors[51].

For a clean superconductor, not only does the DC fluctuation conductivity have

an indirect MT-term, the frequency dependent conductivity should also have an

MT-term, which was calculated by Aslamazov and Varlamov [59]. Starting from a

layered superconductor they found, in the 2D and 3D limits, that the contribution

of the MT-term should be added to the AL-term. Then the frequency dependent

fluctuation contribution should be written as:

σ2DAL+MT (ω) = σ2DAL
DC S2DAL+MT (

π�ω

16kBTct
), (3.49)

σ3DAL+MT (ω) = σ3DAL
DC S3DAL+MT (

π�ω

16kBTct
). (3.50)

where

ReS2DAL+MT (x) = ReS2DAL(x) +
2πx− 2 ln 2x

1 + 4x2
, (3.51)

ImS2DAL+MT (x) = ImS2DAL(x) +
π + 4x ln 2x

1 + 4x2
, (3.52)

ReS3DAL+MT (x) = ReS3DAL(x) +
4 − 4x1/2 + 8x3/2

1 + 4x2
, (3.53)

ImS3DAL+MT (x) = ImS3DAL(x) +
4x1/2 − 8x+ 8x3/2

1 + 4x2
. (3.54)

The x in above equations denotes π�ω
16kBTct

.

3.2.3 Ginzburg Criterion

In the last section, Gaussian fluctuations were incorporated into GL theory. The

above treatment of the fluctuations is valid as long as the order parameter is small

enough so that the non-linear terms in the GL equation can be safely neglected.

However, as temperature grows closer to the critical temperature, the fluctuations

become larger. Finally in a region very close to the critical temperature, where
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the fluctuations can cause the order parameter (and the density of superconducting

electrons) vary greatly over small distances and short times, which means |δψ| is

large and comparable to |ψ|, hence the fluctuations can no longer be treated as

perturbations to mean-field theory.

The following argument can help us estimate when the GL theory breaks down.

The typical size of a fluctuation, ξ, will carry an approximate energy kBTc0. When

this energy density, kBTc0/
4
3
πξ3, becomes greater than the condensation energy

1
2
μ0H

2
c , we can expect the GL theory to break down. From the Eq. 3.16, Eq. 3.21

and Eq. 3.22, we find that GL theory breaks down when

|T − Tc0| < 72
πμoκ

4

e2Φ3
oHc2(0)

k2
BT

3
c0, (3.55)

where Hc2 =
√

2κHc.

A more exact derivation can be obtained from the correlation function Γ(r),

which function tells us how well correlated two regions with a distance r apart are.

Here I will not go to the detailed derivation, but just give the result: [12, 11]

|T − Tc0| < πμoκ
4

2e2Φo
3Hc2(0)

kB
2T 3

c0. (3.56)

With the above criterion, we can estimate the size of the critical regime. For

conventional superconductors, κ ≈ 1, Tc0 ≈ 10 K, and μoHc2(0) ≈ 1 T[11]. Thus, GL

theory breaks down only when |T −Tc0| < 1×10−11 K, which is impossible to access

experimentally. This is why GL theory works well for conventional superconductors.

For the high-temperature superconductors, the situation is very different[11].

Actually due to the anisotropy of these superconductors, the criterion becomes more

complicated. The Eq. 3.56 is modified to become[54]

|T − Tc0| < 1

γ2

πμoκ
4

2e2Φo
3Hc2(0)

kB
2T 3

c0, (3.57)

where γ = ξc/ξab, is the ratio of the coherence lengths along the c and a and b axes.

For YBCO, κ ≈ 120, γ ≈ 0.2, Tc0 ≈ 90 K, and μoHc2(0) ≈ 90 T[18]. This gives
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|T − Tc0| < 0.32 K. Thus, GL theory fails within a 0.6 K window centered about

Tc0, which can be accessed easily experimentally.

3.3 Scaling theory

3.3.1 Scaling Theory and Universality

The Ginzburg criterion tells us that in the critical regime, which is very close to

critical temperature, the fluctuations are large and the mean field theory breaks

down. To describe the system, we need to use scaling theory. In this section, I will

focus on the general scaling theory, which utilizes dimensional arguments to obtain

a form for the conductivity.

The general scaling theory for the conductivity starts with the assumption that

the correlation length ξ diverges as T → Tc(t→ 0) as :

ξ ∼ |t|−ν , (3.58)

where once again t ≡ T−Tc

Tc
is the reduced temperature. Considering a real order

parameter with n components, S = (S1, ...Sq, ..., Sn), where q denotes a direction.

The basic cases are: n=1: Ising spins, n=2: planar spins, n=3: Heisenberg spins. ,

the spatial correlations of the order parameter can be described as:

< SiqSjq >= f((i− j)/ξ), (3.59)

where i and j label the sites of a D-dimensional hypercubic lattice with M sites. The

above equation becomes long-ranged as temperature approaches Tc. At criticality(t =

0), since the correlation length diverges, which indicates that the order parameter

correlations decay as a power law, which has no intrinsic length scale. Then we can

denote the power law by an exponent η:

< SiqSjq >∝ |(i− j)|−D−2+η, (3.60)
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where D denotes the spatial dimensionality. There are other important critical expo-

nents. The normally used critical exponents are (α, β, γ, δ, ν, η), which characterize

the critical behavior close to the critical point. The definitions and relations between

the critical exponents are carefully discussed in [52, 133]. They are not independent

of one another. There hold four relations:

α + 2β + γ = 2: Rushbrook scaling law

γ = β(δ − 1): Widom scaling law

γ = ν(2 − η): Fisher scaling law

2 − α = Dν: Josephson scaling law

So we can see that only two exponents are then needed in order to determine all the

other exponents except for the case that we know α and ν.

One of the important properties here is Universality. It turns out that systems

which belong to the same universality class have the same complete set of critical

exponents. Since the correlation length ξ becomes large upon approaching Tc and

diverges at Tc, it is believed that details such as the lattice structure do not affect

the universal properties. The universality classes have three basic cases:

• D,n =3, Heisenberg spins �S = (Sx, Sy, Sz) in D spatial dimensions;

• D,n =2, planar spins �S = (Sx, Sy, 0)(XY-model),superfluids, superconductors

in D spatial dimensions;

• D,n =1, Ising spins �S = (0, 0, Sz) in D spatial dimensions;

In chapter 1 we have shown that the specific heat exhibits a singularity of the

form:

C =
A±

α
|t|−α, where ± = sign(t), (3.61)

Additionally, the penetration depth and the diamagnetic susceptibility also show

critical behavior as:

1

λ2
i

=
1

λ2
i,0

tν , i= ⊥, ‖, (3.62)

χz ∝ |t|−ν. (3.63)
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The theoretical and experimental work on thermal dynamic properties have

shown that the zero-field normal-superconducting transition is in the static uni-

versality class of the three-dimensional, complex order-parameter (3D XY) model.

In the vicinity of the critical point, dynamical properties also have anomalous be-

haviors, such as transport coefficients, relaxation rates, and the response to time

dependent perturbations. These anomalous properties depend on the equations of

motion and are derivable from time-dependent correlation functions.

For dynamical properties, the relaxation time τ characterizes the relaxation of

the system to equilibrium. As with the correlation length, this relaxation time

diverges as criticality is approached, and there is also a power law dependence on

reduced temperature:

τc ∝ ξz ∝ |t|−νz,

where z is called the dynamic critical exponent. The value of z depends on the con-

served quantities (order parameter, energy, etc). Thus, dynamics introduce one new

universal exponent z. There is considerable evidence that the static critical behavior

of the cuprates belongs to the 3D-XY (n=2) universality class of the λ−transition

in superfluid helium. As for the dynamical properties, the universality of the λ

transition in 4He is that of an n = 2 order parameter coupled to a conserved density

which gives rise to a propagating mode in the ordered state[52]. This is model E

dynamics in the notation of Hohenberg and Halperin with z = 3/2 in D =3 (z =

D/2 in D dimensions)[61]. However, for cuprate superconductors, the dynamics may

be very different. There may be no conserved quantities and the dynamics may be

dissipative. The dissipative case corresponds to model A dynamics, which has no

conserved quantities, with z = 2 [77].
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3.3.2 DC scaling

In the dynamical properties, the conductivity is an important quantity. Through

dimensional analysis, Fisher, Fisher and Huse obtained the scaling relation for the

conductivity.

First we assume a superconductor has fluctuation currents J . The fluctuating

currents will lead to a fluctuating magnetic induction B, which varies in magnitude

as the temperature and correlation length change. The fluctuating magnetic induc-

tion should be relevant to the number of flux quanta per coherence area, Φ0 = 2πBξ2.

Thus the magnetic induction scales as

B ∼ Φ0

ξ2
(3.64)

Since B = ∇×A, so the scaling dimensionality of the vector potential and electric

field are then expressed as:

A ∝ 1

ξ
, E =

1

c

∂A

∂t
∝ 1

ξτ
, (3.65)

in which τ is the relaxation time, scaling as τ ∝ ξz. The dimension of the energy

density fs = F/V ∝ ξ−D, so from the definition of the current

J =
1

c

∂f

∂A
, (3.66)

we obtain the dimension of the current

J =
1

c

∂f

∂A
∝ ξ−D+1. (3.67)

Since the conductivity σ = J/E, with the above formalism, we can obtain:

σ =
J

E
∝ tξ2−D ∝ τξ2−D ∝ ξ2−D+z, (3.68)

Here we use the scaling dimension of time, which is fixed by t ∝ τ ∝ ξz. The

relaxation time τ describes the rate at which the system relaxes to equilibrium. τ

diverges at the transition:

τ ∝ ξz ∝ |t|−zν , (3.69)
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in which z is the dynamical critical exponent.

From Eq. 3.68, the conductivity is ohmic (E ∝ J). However, we know the

superconductor does not respond linearly below Tc and it has nonlinear effects at

high J above Tc as well. We need to extend Eq. 3.68 and include non-linear effects

in the conductivity as a function of J :

σ =
J

E
∝ τξ2−D ∝ τξ2−DG±(JξD−1) (3.70)

where G± is just a dimensionless unknown scaling function. Because J ∝ ξ−D+1, the

scaling function dependence on current mush be of the dimensionless form JξD−1.

This can be recast into a commonly used form as follows:

E

J
= ξD−2−zχ±(JξD−1), (3.71)

where χ± are unknown functions, + means above Tc and − means below Tc.

More formally, we can use the DC scaling equation given by the FFH paper[54]

E

J
= ξD−2−zχ±(Jφ0ξ

D−1/cT ). (3.72)

where c is a constant.

Useful limits

The scaling function χ± in Eq. 3.71 is an unknown function. However, it has two

useful limits. First, above Tc, the function χ+(x) approaches a constant as x→ 0.[54]

Thus, in the limits of low current density J → 0, Eq. 3.71 becomes

E

J
∝ ξD−2−z. (3.73)

This limit is only for above Tc and we can not use the same argument below Tc since

one expect the resistance to vanish as J → 0 below Tc.

The next limit is for x → ∞, which would occur either through J → ∞ or

T → Tc.[54] In this limit

χ+(x) ≈ χ−(x) ∼ x(z+2−D)/(D−1). (3.74)
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Figure 3.2: Schematic of expected E − J curves. The dashed line indicates a slope

of 1, or ohmic behavior. The isotherm at Tc is clearly identifiable as a power law

(straight line with slope �= 1 on the log-log plot). Above Tc for low currents, the

isotherms bend towards ohmic behavior. Below Tc, the isotherms increase in slope

as current decreases.

This results in (for D=3)

E

J
∼ J (z+2−D)/(D−1) ⇒ E ∼ J (z+1)/(D−1) (3.75)

In a plot of the electric field vs. current density at different temperatures in a

log-log scale(E-J plot), we expect to obtain a figure like Fig. 3.2.

One of the major advantages of a log-log plot is the fact that, from Eq. 3.75, we

expect the isotherm at Tc to be a straight line. The slope of the isotherm will then

give us z, as the slope = z+1
D−1

. Isotherms above Tc, but close enough to Tc to be

affected by fluctuations, are non-linear at high currents and become linear at lower

currents, as predicted by Eq. 3.73. Below Tc, we see the isotherms drop rapidly in
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voltage, indicating a transition to a zero voltage state with a finite critical current.

Derivative Plot

Sometimes it is not easy to determine Tc from Fig. 3.2, particularly when the data

is affected by finite size effects, which will be discussed later in detail. Taking the

derivative of logE in Eq. 3.72 with respect to ln J , one has:(
∂ lnE

∂ ln J

)
T

= G±(JξD−1), (3.76)

Where G±(JξD−1) = ∂ ln(JξD−2−zχ±(JξD−1))
∂ lnJ

. At Tc, taking Eq. 3.74, one find(
∂ lnE

∂ ln J

)
Tc

=
z + 1

D − 1
. (3.77)

So in the derivative plot the T = Tc isotherm should become a horizontal line whose

intercept should give the value for z. The expected derivative plot is sketched in

Fig. 3.3.

Here, Tc is easily identified as the horizontal isotherm. Moreover, the isotherms

above and below the transition temperature Tc have opposite slopes. This character

gives a criterion, called the opposite concavity criterion, which was first proposed

by D. R. Strachan.[95]

Data Collapse

The final prediction is what is called ’data collapse’. We can re-write Eq. 3.72 in

the following way:

E

J

∣∣∣∣T − Tc

Tc

∣∣∣∣
ν(1−z)

= χ±

(
J

T

∣∣∣∣T − Tc

Tc

∣∣∣∣
−2ν
)
, (3.78)

where D = 3 is used for the dimension. In a plot of the left-hand side of Eq. 3.78 vs.

the arguments of the unknown functions χ± from the right-hand side, the isotherms

will fall upon two curves, χ+ for above Tc, and χ− below Tc. So, for a true phase

transition where Eq. 3.78 applies, all of the isotherms from Fig. 3.2 will collapse
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Figure 3.3: Schematic of expected ∂ log(E)/∂ log(J). Tc is identified as the horizon-

tal isotherm. The intercept is (z+1)/2 with the assumption that D=3. Isotherms

above and below Tc display opposite concavity about Tc. ∂ log(E)/∂ log(J) = 1

indicates ohmic behavior.
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Figure 3.4: Schematic of expected data collapse. The left-hand side of Eq. 3.78 vs.

the argument of the unknown functions χ±. All the isotherms from Fig. 3.2 fall on

one of two curves for above and below Tc. A good data collapse is viewed as strong

evidence for a phase transition as well as confirmation of the correct choices for Tc,

z, and ν.

onto two distinct curves. A data collapse is sketched in Fig. 3.4. It depends on the

values for Tc, z, and ν. A good data collapse is evidence of the correct choices for

these critical parameters.

3.3.3 AC Conductivity Fluctuations

The form of the fluctuation conductivity at finite frequencies can also be determined

by dimensional arguments. For T < Tc and low frequency, the complex conductivity

has the form

σ(ω) ≈ ρs

−iω + ε
(3.79)
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where ε → 0+, the real part thus having a δ function at zero frequency. Here ρs is

the superfluid density, and we know that ρs ∼ ξ2−D [62] and that the characteristic

relaxation time scales as τ ∼ ξz. This indicates that the low frequency linear

conductivity should scale as:[54]

σ = ξz+2−DS±(ωξz), (3.80)

where the scaling functions S± apply above (+) and below (−) Tc. This scaling

function may be also obtained by following the scaling analysis method for the DC

case. Actually from Eq. 3.70, we have known σ ∝ ξz+2−D. Since we want to find the

frequency dependent linear conductivity, function that includes ω should be put in.

ωτ can be used as the variable so that the function itself and the variable are both

dimensionless. Then we obtained Eq. 3.80

For the AC scaling, there are also some limits. Firstly for x → 0, the scaling

function behaves as S+(x) →real constant above Tc and S−(x) ∼ 1/(−ix) below Tc,

reflecting the low-frequency behaviors.

The other limit is for x→ ∞, representing T → Tc. We have

S+(x) ≈ S−(x) ≈ c̃x(D−2)/(z−1) (3.81)

with c̃ a complex constant.[54] Hence, at Tc, both the real and imaginary parts of σ

diverge for ω → 0 as

σ(ω) ∼ ω−(z+2−D)/z (3.82)

The complex AC conductivity can be write as σ̂ = |σ|eiφ, so we have

|σ| = ξz+2−D|S±(ωξz)|, (3.83)

φ = Φ±(ωξz). (3.84)

A scaling argument yields the power-law relation at Tc.

|σ| ∼ ω−(z+2−D)/z, (3.85)
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And also for the phase we have:

φ =
π

2
(z + 2 −D)/z, (3.86)

Similar to DC fluctuation, we also have the corresponding AC derivative scaling

relation:

−
(
∂ ln |σ|
∂ lnω

)
T

= F±(ωξz). (3.87)

At Tc, this becomes

−
(
∂ ln |σ|
∂ lnω

)
Tc

= (z − 1)/z. (3.88)

However, because AC measurement of conductance vs. frequency is noisy compared

to DC measurement of voltage vs current, it is difficult to take derivatives to analyze

the data.

Wickham-Dorsey Scaling function

Alan Dorsey considered the effects of critical superconducting fluctuations on the

scaling of the linear ac conductivity σ(ω), of a bulk superconductor slightly above

Tc in zero applied magnetic field. He applied the dynamic renormalization group

method to the relaxational time-dependent Ginzburg-Landau model of supercon-

ductivity. He found the critical dynamics are governed by the relaxational XY-

model renormalization-group fixed point and also he verified the scaling hypothesis

σ(ω) ∼ ξz+2−DS±(ωξz) proposed by Fisher, Fisher, and Huse.[54] Most important,

the universal scaling function S(y) is computed above Tc [106]:

S+(y,D, z) =
2z2

(D − 2 − z)(D − 2)

1

y2
[1 − D − 2 − z

z
iy − (1 − iy)(D−2+z)/z], (3.89)

where y = ωτ ∼ ωξz.

Fig. 3.5 shows the phase and magnitude of the above scaling function S+(y)

for different values of dimensionality D and critical exponent z. The figure also

shows that the phase of S+(y) increases and the magnitude of S+(y) decreases as y

increases. From the figure, we find at large y, which means close to Tc, the S+(y)
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is sensitive to the dimensionality D and critical exponent z. However, for small y,

which means far above Tc, the S+(y) is essentially independent of dimension D and

z. This is natural since the fluctuation contribution is small when far above Tc.

It is instructive to compare the universal function S+(y) for the critical theory

with the experiment result. Robert A. Wickham and Alan T. Dorsey compared

the critical theory with measurements of the microwave conductivity of a thin-film

sample of Y Ba2Cu3O7−δ in the range of 45 MHz-45 GHz near Tc. They found the

critical theory fits the experimental scaling curve very well over almost four decades

in scaled frequency y, but deviates from the experimental data taken nearest to

Tc.[106] However, there are still some unresolved questions from this analysis. First

is that the reported value of z ≈ 2.6 can not be explained in the frame of 3D-

XY. R. A. Wickham et al. claimed that this is might be due to the uncertainties

in the experimental determination of Tc and more ac conductivity measurements

with higher temperature resolution near Tc may resolve this issue, and allow a more

accurate determination of z. It is also possible that the films under study contain

strong disorder, which could affect the scaling near Tc.[106]

The universal function S+(y) above Tc is useful. If we could have also the S−(y)

below Tc, it would be more important for us to investigate the critical behavior

around Tc. However, it is a pity that the R. A. Wickham et al. did not compute

the S−(y) below Tc. Right now there is still no universal function below Tc, which

incorporates critical theory.

We checked that Wickham-Dorsey Scaling function reduces to the 3D Gaussian

predictions. When choosing the dimension D = 3 and z = 2, taking real and imag-

inary parts of S+(y), we obtained F+
1 and F+

2 in Eq. 3.35 and Eq. 3.36 respectively.

As another check, one can show that Eq. 3.89 reduces to the 2D Gaussian predic-

tions when choosing D = 2 and z = 2.(Note that one needs to carefully take the

limit d→ 2)

Here starting from the above S+(y), and also the form of the Gaussian fluctu-
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ations, we can construct a universal function S−(y) below Tc, which satisfies some

know constrains, which are that S−(y) reduces to 3D Gaussian predictions when

choosing D = 3 and z = 2, and 2D Gaussian predictions when choosing D = 2 and

z = 2. According to these limiting constrains, we constructed a proposed scaling

function S−(y) below Tc, which is

S−(y,D, z) =
2z

D−2+z
z

(D − 2)

1

1 + y2
(
√
D − 1(1−iy)− 1

1 + y2
(1−iy)(D−1+z)/z

√
1 + iy).

(3.90)

The above proposed form of the scaling function has the correct 3D limit and

almost the correct 2D limit. We are still working on this and trying to construct

a scaling function with both correct 3D and 2D limits. Of course this S−(y) is a

constructed function instead of a result derived from basic theory. However, it does

give us some information about the critical behavior below Tc.

3.4 Finite Size Effect

Previously we have mentioned the finite size effect on fluctuations. Due to inhomo-

geneities, a solid is always homogeneous only over a finite length L. In this case, the

actual correlation length ξ(t) ∝ |t|−ν can not grow beyond L as t→ 0,and the tran-

sition will become rounded. This finite size effect has been investigated for a long

time. We also notice that the DC scaling should exist only with ξ ∼
∣∣∣T−Tc

Tc

∣∣∣−ν

where

ξ is correlation length. When T is close enough to Tc, ξ might be very large and

close to the thickness of the film. So there comes another so-called finite size effect.

This finite size effect in the DC case was discussed by Matt Sullivan [94]. How does

the finite size affect the AC fluctuation conductivity? This question has not been

solved yet. In Chap. 5, we will start from the experimental data and discuss the

finite size effect on the AC fluctuation conductivity.
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Figure 3.5: Phase and Magnitude of Dorsey’s scaling function S(y) above Tc for

different D and z. (a) Phase part of S(y) for D=3 and different value of z. (b) Phase

part of S(y) for z=2 and different dimensions. (c) |S(y)| for D=3 and different value

of z. (d) |S(y)| for z=2 and different dimensions.
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Chapter 4

AC Experiment And Data Discussion

4.1 Sample Preparation And Characterization

4.1.1 The Material: YBCO Thin Film

In our experiments, the samples are Y Ba2Cu3O7−δ(YBCO) thin films, which was

discovered in 1987 and was the first superconducting material in the liquid nitrogen

temperature range.[8, 9, 10]. YBCO is a typical high temperature superconductor

with a layered structure. This is very different from the conventional superconduc-

tors, which are normally elements (e.g. mercury, tin) or simple compounds (e.g.

NbN, Nb3Ge). A unit cell of YBCO is shown in Fig. 4.1. The unit cell of YBCO

is orthorhombic, with a = 3.83Å, b = 3.89Å, c = 11.66Å. However, since a ≈ b, it

is often reasonable to assume c ≈ 3a ≈ 3b and consider the unit cell to be tetrag-

onal. 1 Fig. 4.1 shows the copper-oxygen planes, which are an important feature

of HTSCs. Superconductivity occurs in these planes. Normally with the layered

structure, HTSCs tend to be anisotropic. Compared with other HTSCs, YBCO is

relatively isotropic, and has a small anisotropy parameter γ ≡ ξab

ξc
∼ 2 to 8.

YBCO is a hole-doped superconductor, for which the carrier concentration is de-

termined by the oxygen vacancies. The oxygen vacancies are important in YBCO.

1Information on crystal structures and properties taken from Ref. [134].

96



Y

Ba

Ba

Oxygen

Copper

a

b

c

Copper-oxygen 
planes

a = 3.83 Å
b = 3.89 Å
c = 11.66 Å

Figure 4.1: The unit cell of YBCO. The additional oxygen atoms indicate the copper-

oxygen planes, where superconductivity occurs in this material. The lengths of the

unit cell axes a, b, and c are given. Graph is adapted from Ref. [89]
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Under-doped Over-doped

Figure 4.2: Transition temperature vs. doping in YBCO. Graph is adapted from

[63].

For example, the transition temperature of YBCO varies strongly with oxygen dop-

ing, as shown in Fig. 4.2. YBCO has its highest Tc at optimal doping where small

changes in doping have less affect on Tc than they do for over- and under-doped

samples. So in our work, we investigate optimally-doped YBCO films.

4.1.2 Film Growth via Pulsed Laser Deposition

There are several different methods for YBCO film growth, such as sputtering,

molecular beam epitaxy, and pulsed laser deposition(PLD). PLD is an economic,

time efficient and relatively easy method of grow YBCO films. Basically when using

the PLD method to grow films, a high energy laser pulse is fired at a target and a

plasma is ejected from the target, which deposits on a substrate with appropriate

conditions. The schematic of the system is shown in Fig. 4.3.
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Figure 4.3: Schematic of PLD setup, showing laser, vacuum chamber, target and

heater. (not to scale)
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The core part of the PLD system is a vacuum chamber, normally called the PLD

chamber. As shown in Fig. 4.3, there is a target carrousel and heatable sample stage

inside the chamber. When using a PLD chamber to grow a film, a high-energy laser

pulse is fired into a vacuum chamber onto a rotating target. The energy density

on the surface of the target is important, and can be controlled by adjusting the

laser’s high voltage setting, the aperture size, position and the lens distance from

the target. The high energy laser pulse makes the surface layers of the target form a

plasma plume, which is ejected from the target to the substrate on the heater. This

plasma combines with the oxygen in the chamber and is deposited on the heater and

substrate. Under appropriate conditions, heater temperature and oxygen pressure,

an epitaxial crystalline film will grow on top of the substrate. When the deposition is

finished, an annealing process is performed. To do this, we close the main valve and

insolate the chamber from the outside environment. Then we fill the chamber with

a certain pressure of oxygen through the vent valve and gradually cool the sample

down to room temperature. After this annealing, we will obtain the superconducting

thin film on the substrate.

High-quality YBCO films require that copper-oxygen planes must align, oxygen

content must be uniform, etc. In order to make high-quality films, some parameters

have to be carefully controlled, including aperture size, lens distance from the target,

target distance from the heater, heater temperature, thermal link from the substrate

to the heater, laser energy, oxygen pressure during deposition, annealing conditions,

and more. Doug Strachan, a former student in our group, listed a table with detailed

parameters of growth condition for YBCO film, and more importantly gave a step-

by-step description of PLD film growth in Appendix A of Ref. [18]. I will not repeat

these again. Here I just point out that the deposition conditions, energy density and

temperature would depend on the target. However, generally our films were grown

with an ultra-violet Kr-F laser (λ = 248 nm), at a heater temperature of ≈ 850◦C,

in a 150 mTorr O2 environment, with an energy density of ≈ 1 J/cm2, and a pulse
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rate of 5 Hz to 10 Hz.

For YBCO film growth, a lot of substrates can be used, including LaAlO3 (LAO),

SrTiO3 (STO), NdGaO3 (NGO), MgO and yttria-stabilized zirconia(YSZ). LAO,

STO and NGO are normally used by researchers. LAO substrates have the disad-

vantage that they have significant twinning and warping upon heating and cooling,

which causes structural damage in the YBCO films. STO substrates do not have a

structure change with temperature, and also have better lattice match to YBCO.

One other advantage of STO substrates is that it is relatively easy to obtain high

quality YBCO films on this substrate. These advantages make the STO substrate

popular. However STO has a high dielectric constant at room temperature(≈ 300),

which also changes with temperature, thus is not a good choice for high-frequency

measurements. NGO has a relatively small dielectric constant (≈ 20), and even a

smaller lattice mismatch with YBCO than STO, and is actually an ideal candidate

for film growth. However, we found it is difficult to grow high quality films on NGO.

It is very sensitive to the deposition parameters, in particular the substrate tem-

perature and laser energy. After carefully adjusting the parameters, we successfully

grew high quality YBCO samples on NGO substrates for our AC experiment.

4.1.3 Film Characterization

Optimization of the sample growth conditions and obtaining a good film is not

so easy. In order to obtain high quality films, it is necessary to test the quality

of the film by different characterization methods, such as AC susceptibility, x-ray

diffraction etc.

AC susceptibility

The AC susceptibility measurement is a fast and convenient method to determine

Tc and inhomogeneities. With AC susceptibility we do not need to pattern the film
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Figure 4.4: Schematic of the AC susceptibility measurement, showing sample, coils

and temperature sensor. (not to scale) An AC signal is applied to the top coil and

picked up on the other side of the film. As the film becomes superconducting, it

screens the magnetic field and changes the mutual inductance of the coils, reducing

the signal at the pickup.

and make electric connections on the sample. So it is a damage-free method to test

the sample. What we need to do is just place the sample in-between two coils, as

shown in Fig. 4.4. A small signal is applied to the top coil and picked up on the

other side of the film. It is actually a measurement of the mutual inductance of the

coils.

Superconductors are perfect diamagnets and expel magnetic field below Tc.

Thus, as the temperature of the film goes below Tc, the film becomes supercon-

ducting and screens the magnetic field, and changes the mutual inductance between

the two coils. The amount of magnetic flux reaching the pickup will be reduced.
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Figure 4.5: Both real and imaginary parts of the AC susceptibility versus tempera-

ture for a good sample (xuh132). Here Tc ≈ 90.9K and ΔTc ≈ 0.1K.

So according to the AC susceptibility we can determine the Tc of the sample. Also

because the flux goes through the bulk of the film, AC susceptibility can give us

inhomogeneity information about the film.

Fig. 4.4 shows the schematic of the AC susceptibility measurement apparatus.

The applied AC signal is typically 200 kHz. On the other side of the film, the

voltage created in the pickup coil is detected by a lock-in amplifier. The signal

measured here has both real and imaginary parts, since χ = χ′ + iχ”. As the

sample temperature decreases through Tc, the real part goes down because of less

flux through the film. For a paramagnetic material, the magnetization will be in

phase and for a diamagnetic material, the magnetization will be out of phase. The
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imaginary part χ” is nearly zero both above and below Tc. Around Tc, due to the

fluctuations, the magnetization will be neither perfectly in phase or out of phase,

so χ” �= 0. Normally we take the peak in χ”(T ) as Tc. The width of the peak

tells us homogeneity information about the sample. We take the full-width at half

maximum as ΔTc. High Tc and small ΔTc means a good film. Fig. 4.5 shows an

example of an AC susceptibility plot of sample xuh132. The imaginary peak gives

Tc ≈ 91.9 K , and the width gives ΔTc ≈ 0.1 K.

Susceptibility measurements not only tell us which films are of high quality, but

also help us to identify some common problems in films. In Fig. 4.6, we show four

different AC susceptibility measurements. Fig. 4.6(a) is the same as Fig. 4.5, and

is one of our best films. Fig. 4.6(b) shows a film with two transitions. However,

sometimes when the substrate is poorly glued to the heater, the temperature may

vary substantially over the substrate, which causes different oxygen concentrations

in the film. The other possibility is there are also some a-axis grains in the film,

which also results in the double transition. This kind of film is exactly what we

must avoid. Fig. 4.6(c) exhibits a film with a shoulder below the main transition.

Although it still indicates different oxygen concentrations in the film, in this kind

of film, these different concentrations normally come from the edge of the film. We

have found that the silver paint used to glue the substrate usually covers the sides

of the substrate, which makes the edges of the substrate have a slightly different

temperature from the middle. This gives the edges of the film a slightly different Tc

than the center. For this kind of film, the shoulder will disappear if we cut off the

edges of the film and measure it again. Since the center of the film is still uniform,

it is still possible to use these films for subsequent measurements. The film in the

last panel, Fig. 4.6(d), has a wide transition and a low transition temperature. This

film is not useful for our measurements.
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Figure 4.6: The AC susceptibility graphs of four different samples are shown: a)

xuh132, b) xuh080, c) xuh078, and d) xuh005. Solid lines are the real part, lines

with dots are the imaginary part. Panel (a) shows a good film, (b) a film with two

transitions, (c) a film with a ”shoulder”, and (d) a generally poor film with a low

Tc and wide transition.
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X-ray diffraction

If a YBCO film has the c-axis perpendicular to the surface of the substrate and the

copper-oxygen planes stacked on top of each other, parallel to the surface of the

substrate, it is called c-axis oriented. For a-axis and b-axis films, the copper-oxygen

planes are perpendicular to the surface of the substrate. In our experiment, we want

to investigate properties of c-axis oriented YBCO. Thus we hope to avoid a- and

b-axis grains.

X-ray diffraction (XRD) is a simple and fast, yet powerful method of analyzing

crystalline phases in a material. With this technique, high angular resolution and

accurate structure data of the sample can be obtained, which makes XRD one of

the most common techniques for material analysis. In our experiment, we use X-ray

diffraction to look at the crystallinity of our films and to determine whether they

are c-axis films.

An x-ray diffractometer shines x-rays of a certain wavelength at our sample at

a given angle θ, measured between the source and the sample. These x-rays reflect

off the surface of the film and also off the lattice planes inside the film. The Bragg

equation sets the condition for constructive interference of the X-rays scattered from

atomic planes of the material

2d sin θ = nλ (4.1)

where λ is the X-ray wavelength, n is an integer, θ is the scattering angle and d is the

lattice spacing.[134] With the Bragg equation and the linewidths of the diffracted

peaks, we can determine the crystalline orientation of the planes, internal stresses

and strains in the film, and the irregularities in the structure of atoms (i.e. lattice

defects).[135]

The XRD data is usually plotted as counts vs. 2θ, where the counts is pro-

portional to the number of photons reaching the detector. From the position of

the peaks and the wavelength of the incident photons, we can determine the lattice
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spacing that created that peak. The expected lattice spacings, 2θ1, and 2θ2 values

for YBCO, NGO, and some common impurity phases can be found in Ref. [136]

using the Miller indices (hkl) in the reciprocal lattice of the crystallographic planes.

One of the major problems in c-axis YBCO films is a-axis grain growth, which

can be identified with an x-ray diffractometer. Because c ≈ 3a, a substrate matched

to the a and b axes of YBCO can still grow a-axis films. In fact, very thick films

(d � 4000 Å) are a mixture of c- and a-axis. In addition, films thinner than 1000 Å

generally have a lower Tc. Hence, most films tend to be in the range 1000 Å <

d < 4000 Å. But even films in this optimum thickness range can grow a-axis grains.

In particular, during annealing, a-axis grains form as an outgrowth on the surface

of the c-axis films. Again, because c ≈ 3a, these outgrowths form rectangular

structures at 90◦ to one another on top of the c-axis structures.[89]

Unfortunately the a-axis peaks occur close to the substrate peaks, so small

amounts of a-axis can be drowned out by the substrate.[136] The a-axis peak easiest

to see is the YBCO (200) peak, which appears just to the right of the STO (200)

and YBCO (006) peaks. In Fig. 4.7, sample mcs89 (solid) shows no a-axis, whereas

sample mcs141 (dashed) shows a small a-axis peak at 2θ = 48◦.2 [89]

Surface analysis

If there are a-axis outgrowths on the surface of the film, they can be seen using

an atomic force microscope (AFM). More readily it can be seen using a a scanning

electron microscope (SEM) since the c- and a-axis direction have very different

conductivities. Fig. 4.8 shows SEM pictures of the surfaces of two films. Fig. 4.8.a

is a film with a-axis growths on the surface and Fig. 4.8.b is pure c-axis oriented.

We can see that there are rectangular structures at 90◦ to one another in Fig. 4.8.a.

2The peaks do not occur at exactly the values predicted in Ref. [136]. The diffractometer has

a slight offset which changes as a function of θ, and our lattice spacings never match exactly those

found in references.

107



44 44.5 45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50

0.2

0.4

0.6

0.8

1

1.2

1.4

2θ (deg.)

N
or

m
al

iz
ed

 c
ou

nt
s 

(a
.u

.) STO (200) and
YBCO (006) 

YBCO (200) 

Figure 4.7: X-ray diffraction pattern for mcs89 (solid) and mcs141 (dashed). The

large peak is STO (200) and YBCO (006). At 2θ = 48◦, mcs141 has a small a-axis

peak (YBCO (200)). Adapted from Ref. [89]
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These rectangular structures are the signature of the a-axis impurity. In these

rectangular structures, the c-axis points parallel to the long side of the rectangle.

Away from the rectangular structures, the c-axis points out of the page. Fig. 4.8.b

is a pure c-axis oriented film where there are no rectangular structures.

Another important piece of information that can be obtained from the SEM and

AFM images is the roughness of the film, which is

Ra =
1

N

N∑
i=1

|Zi − Z|, (4.2)

where Zi is the height of each of N points in the image and Z the average height. A

good film normally has a roughness somewhere between 50 Å and 100 Å, which is

about 3-5% of the typical thickness. Taking an AFM picture is more time efficient

than taking an SEM picture. So AFM is normally used for the surface roughness

analysis.

A typical AFM picture of a YBCO film is shown in Fig. 4.9. This film has a

roughness of 130 Å. We noticed that there are some big peaks of height > 100 nm.

These peaks are common in our films, which might be dust and can be removed by

cleaning the film. Measuring roughness in an area which does not include a peak,

we find a roughness ≈ 70 Å.

The AFM have also been used to study the degradation of the film’s surface as a

function of time by previous students in our group. Their results showed that there

is no real change in roughness from 15 minutes to 75 days, and also no change after

cleaning the film with acetone. Thus, the roughness measure can be done at any

point in a film’s lifetime.[89]

Other analysis

There are also other methods to characterize YBCO films, such as critical cur-

rent density measurement, resistance measurement and Rutherford back scatter-

ing(RBS). I have also used these methods to analyze the quality of films.
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Figure 4.8: a) SEM image for a film with a-axis outgrowth on the surface of the

film. b) SEM image for a pure c-axis oriented film. Films imaged by M. Lilly and

D. Tobias. Adapted from Ref. [89]
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Figure 4.9: AFM image of a typical film (mcs172), with Ra = 130 Å. The large

peaks (height > 100 nm) are a recurring feature in our films, but break off easily.

Film imaged by M. Lilly. Adapted from Ref. [89]
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4.1.4 Sample Preparation and Measurement

According to the above characterization method, we optimized the film growth

conditions. After a good film was made, we deposited gold contacts on its surface

immediately by thermal evaporation. Here the ”good film” definition is that the

Y Ba2Cu3O7−δ films are of predominant c-axis orientation, which are verified by

X-ray diffraction; the transition widths(10% to 90%) are less than 0.5 K and Tc is

around 90 K, which are measured by AC susceptibility.

Through a washer-shaped shadow mask, we made the gold contact in the form

of a Corbino disk, which has been shown in chapter 2. The sample was used to

terminate a coaxial transmission line where the complex reflection coefficient Ŝ11

can be measured. To insure that the power incident at the sample was independent

of frequency, a power-flattening calibration is performed at the sample plane.

The experimentally measured reflection coefficients include the attenuation, mul-

tiple reflection and phase shift due to the coaxial cable system. A general expression

for the measured reflection coefficient Ŝmeasured
11 in terms of the actual reflection co-

efficient at the film Ŝfilm
11 is

Ŝmeasured
11 = ED +

ERŜ
film
11

1 − ESŜ
film
11

. (4.3)

Here ED, ER and ES are complex error coefficients representing the directivity, the

reflection tracking and the source mismatch, respectively. From Eq. (4.3), the error

coefficients can be determined by measuring the S11 of three different known loads.

A room temperature calibration is performed first to determine initial values for the

complex ED, ER and ES as functions of frequency.

The present experiment is performed with an electrical calibration that is su-

perior to mechanical calibrations used in our prior work. [92, 91] After the room

temperature calibration, standard open and short connectors are put back to check

the calibration quality. In the entire frequency range from 10MHz to 50GHz, after

calibration the obtained |S11| for both standard open and short connectors dif-

112



fer from 1 by less than 0.2dB. In particular for the frequency range from 30MHz

to 20GHz, |S11| measured for standard open and short differ from 1 by less than

0.05dB.

As temperature is decreased, the error coefficients of the system can change.

Then through the calibration and analysis procedures that have been discussed in

chapter 2, we performed a re-calibration and obtained the correct reflection coef-

ficient of the films around Tc. To do this, the YBCO sample is assumed to be

an ideal short(ZL(f) = 0Ω) in the superconducting state(well below the transition

temperature), and an ideal resistive load at temperatures in the normal state(well

above the transition temperature). A silver disk and a teflon disk are measured in

the same temperature range as well for reference. Analyzing the measured Ŝ11 of 2

references and Ŝ11 of samples in the superconducting and normal states, corrected

error coefficients valid for the system at low temperature are derived. Using these

new error coefficients the surface impedance can be extracted as[92]

Zs(ω) = Z0
2π

ln b
a

· 1 + Ŝ11(ω)

1 − Ŝ11(ω)
, (4.4)

where Z0 = 50Ω is the characteristic impedance of the coaxial transmission line and

a and b are dimensions shown in Fig. 2.5.

The surface impedance Zs(ω) here includes contributions from the YBCO sam-

ple, the substrate and the sample holder. Above and close to Tc, the film thickness

t0 and the complex propagation constant k in the film satisfy t0|k| � 1, so:

1

Zs(ω)
∼= 1

ZY BCO
s

+
1

Zsub
s (ω)

(4.5)

where Zsub
s (ω) is the total contribution of the substrate and the sample holder and

ZY BCO
s is the desired surface impedance of the YBCO film sample. Far above Tc,

the YBCO sample is in the normal state and ZY BCO
s = ρ(ω)/t0 is a constant as a

function of frequency. From the DC resistivity of the sample that is measured above

Tc, the substrate and the sample holder contribution Zsub
s (ω) can be calculated
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according to Eq. (4.5). Since the substrate and the sample holder contribution have

little temperature dependance, Zsub
s (ω) is used to obtain ZY BCO

s at all temperatures.

4.2 The Complex Resistivity Near Tc in YBCO

Films

The main advantage of the Corbino reflection measurement is the ability to mea-

sure the complex resistivity ρ = ρ1 + iρ2 over a wide range of frequencies, including

dc. Fig. 4.10(a) shows the temperature dependence of ρ1 at a number of differ-

ent frequencies for a typical YBCO thin film, xuh139. The dc resistivity of the

sample is also shown in Fig. 4.10(a) as a solid thick line. The main feature of the

temperature-dependent data is the fact that the transition broadens considerably as

the measurement frequency increases. At higher temperature where the sample is in

the normal state the data at different frequencies (including dc) overlap each other,

because the normal state scattering rate 1/τn is much greater than the measurement

frequency over the entire frequency range.

Fig. 4.10(b) shows the ρ2 dependence on temperature around Tc. From the plots,

we can see ρ2 has a peak close to the transition temperature and the temperature

at which the peak occurs depends on frequency and moves systematically lower for

higher frequencies. The measured Ŝ11 has noise, which is less than 0.2dB in the entire

frequency range and is much smaller for frequency less than 20GHz(< 0.05dB).

The measurement resolution of �Ŝ11 is about 0.01dB for the frequencies in Fig.

4.10(b). This translates to a resolution limit about 0.25 × 10−7(Ωm) for resistivity

or 4 × 107(1/Ωm) for conductivity. Above Tc, the imaginary part of the resistivity

has larger noise due to the process of removing the substrate contribution through

Eq. 4.5, adding resistivity noise on the order of 0.5 × 10−7(Ωm).

Fig. 4.10(c) and Fig. 4.10(d) show the frequency dependence of ρ1 and ρ2 at
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Figure 4.10: Complex resistivity of YBCO film xh139 around Tc. (a) Tempera-

ture dependence of the real part of the resistivity at different frequencies; (b) and

imaginary part of the resistivity; (c) frequency dependence of the real part of the

resistivity around Tc; (d) and imaginary part of the resistivity around Tc
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different temperatures. In Fig. 4.10(c), it is clear that ρ1 is frequency independent

above and below Tc and strongly depends on frequency in the vicinity of Tc. Fig.

4.10(d) shows that above Tc, ρ2 is roughly zero and frequency independent, which

is consistent with a normal state resistivity that is completely real. Below Tc, ρ2 is

approximately linear in frequency, since ρ2 ≈ μ0ωλ
2(T ) for T < Tc. Close to Tc ρ2

is large and depends on frequency in a non-linear manner. From Fig. 4.10 we have

a rough idea that Tc is 89.20 ± 0.30K.

4.3 The Fluctuation Conductivity Near Tc

We are interested in the dynamic fluctuation conductivity of the sample. To ex-

tract the frequency-dependent fluctuation conductivity, we convert the measured

complex resistivity to conductivity and then remove the mean-field contribution as

determined from the dc resistivity which is measured from room temperature down

to the lowest temperature in the same experiment. Fig. 4.11 shows the magnitude

|σfl| and phase φσ of the resulting fluctuation conductivity vs. frequency at different

temperatures. In this figure, both the magnitude |σfl| and phase φσ become noisy

at low frequency for some lower temperatures where they are close to the sensitiv-

ity limit of the experiment. Particularly, it is hard to determine the phase when

measuring a very large conductivity because we are in the limit of Ŝ11 → −1 in

Eq. 4.4 and noise dominates the determination of Zs. Although the magnitude of

the conductivity is large, its phase information is lost in the impedance step of the

data analysis. When doing analysis, we have to be more cautious with data at low

frequency especially for temperatures below Tc.

Fisher, Fisher and Huse(FFH)[54] have argued that near the second order phase

transition, dynamic scaling holds

E

J
= ξD−2−zχ±(JξD−1, ωξz, Hξ2, ...), (4.6)

which has been discussed in derail previously in Chap. 3. In zero magnetic field
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Figure 4.11: Measured magnitude |σfl| and phase φσ of fluctuation conductivity vs.

frequency at different temperatures near Tc for sample xuh139.
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when the current density is small the complex AC fluctuation conductivity should

scale as

σfl(T, ω) ≈ ξz+2−DS±(ωτfl). (4.7)

In this chapter, in order to determine the correct critical exponents the applied

microwave power is -46dBm, which is very small and but also still gives relatively

good sensitivity. Detailed discussion about the applied microwave power will be

given in the next chapter. In this chapter, we applied -46dBm microwave power for

the measurement and extract the critical exponent from the results.

In Eq. 4.7, ξ is the correlation length and τfl is the fluctuation lifetime. The

function S± is a universal scaling function above (below) Tc , which should be the

same for all members of a given universality class. As temperature approaches Tc,

both ξ and τfl will diverge: ξ = ξ0|t|−ν, τfl = τ0|t|−νz with t = (T − Tc)/Tc. The

scaling functions behave as S+(y) → real constant and S−(y) → 1/(−iy) for y → 0,

reflecting the low frequency behavior above and below Tc respectively. As y → ∞,

representing T → Tc, S+(y) ≈ S−(y) ≈ c̃y(D−2)/(z−1) with c̃ a complex constant and

D is the dimensionality of the system. The complex fluctuation conductivity can be

written as σfl ≈ |σfl|eiφσ , so both the magnitude and phase are predicted to scale:

|σfl| ≈ ξz+2−D|S±(ωξz)|, φσ = Φ±(ωξz) where Φ± is the phase the of the scaling

function S±. At Tc, one expects: |σfl| ∼ ω−(z+2−D)/z, φσ = π
2
(z + 2 −D)/z.[106]

4.4 The Conventional Analysis Method and its

Improvement

Examining experimental data with the above scaling formula Eq. 4.7 and Eqs. 3.85

3.86 in previous chapter, one can search for the temperature at which the conduc-

tivity magnitude best fits to the power law and has a constant value of φσ. This

then determines Tc and the dynamical critical exponent z. Proceeding this way,
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since ξ = ξ0|t|−ν, τfl = τ0|t|−νz, Eq. 4.7 can be re-written as

Ãσflt
ν(z+2−D) ≈ S±(ωτ0t

−νz) (4.8)

where Ã is a complex constant. If we plot the magnitude of the left-hand side of

Eq. 4.8 vs. the argument of the scaling function S±, then the isotherms should

fall upon two curves, which we call ”data collapse”. Such a collapse has been

widely used to determine the critical exponent ν and verify the presence of a phase

transition. This is the conventional analysis method. In this method the choice of

Tc is crucial because it directly determines the value of z. If Tc and z are only known

approximately, an accurate value of ν can not be obtained through data collapse.

To illustrate this point, Fig. 4.12 shows data collapse results for our measured

frequency dependent microwave conductivity around Tc with 4 different sets of pa-

rameters(Fig. 4.12(a), ν = 2.30, z = 2.71, Tc = 88.68 K; Fig. 4.12 (b), ν = 1.50, z =

3.71, Tc = 88.88 K; Fig. 4.12 (c), ν = 1.35, z = 2.05, Tc = 89.10 K; Fig. 4.12 (d),

ν = 1.45, z = 1.53, Tc = 89.25 K). The red lines in the figure are a theoretical fit

of Wickham and Dorsey’s scaling function S+[106] to the critical behavior above

Tc, which will be discussed later. Fig. 4.12 shows that good data collapses on the

same data set can be obtained for a large range of parameters, and all of them are

consistent with the theoretical prediction for the scaling function above Tc. Hence

to get reliable critical exponents, a precise determination of Tc and z has to be done

first, then data collapse can be used to obtain the value of ν. In this chapter, we

concentrate on the determination of Tc and z.

From the experimental data in Fig. 4.11, it is clear that the AC fluctuation

conductivity at all temperatures deviates from a power law at low frequency. This

is because the scaling function S+(y) ≈ S−(y) ≈ c̃y(D−2)/(z−1) shows power-law

behavior only as y = ωτfl → ∞. For low frequency or for temperatures far away

from Tc, y is not in this asymptotic limit and the scaling function deviates from

a power law. In addition, we found the fluctuation conductivity at low frequency

119



10
35

10
40

10
45

10
50

10
−15

10
−10

10
−5

|σ
fl
|*

|t
|ν

(z
−
1
)

ω*|t|−νz

(a)

10
28

10
30

10
32

10
34

10
36

10
−6

10
−4

10
−2

10
0

10
2

|σ
fl
|*

|t
|ν

(z
−
1
)

ω*|t|−νz

(b)

10
24

10
26

10
28

10
30

10
0

10
2

10
4

|σ
fl
|*

|t
|ν

(z
−
1
)

ω*|t|−νz

(c)

10
23

10
25

10
27

10
3

10
4

10
5

10
6

|σ
fl
|*

|t
|ν

(z
−
1
)

ω*|t|−νz

(d)

Figure 4.12: Data Collapse of magnitude of microwave conductivity vs. frequency for

one data set and different sets of parameters. (a) ν = 2.30, z = 2.71, Tc = 88.68K;

(b) ν = 1.50, z = 3.71, Tc = 88.88K; (c) ν = 1.35, z = 2.05, Tc = 89.10K; (d)

ν = 1.45, z = 1.53, Tc = 89.25K. Red lines are a theoretical prediction calculated

from the scaling function S+(y)[106]
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systematically depends on the applied microwave power, which may arise from a

finite size effect. We will discuss this low frequency power dependence in detail

in chapter 5. Because of these issues, we are forced to use a higher frequency

range to obtain the critical exponents. At very high frequency, the calibration

degrades and the process of removing the normal channel contribution makes σfl

vs. frequency show upward curvature. Hence a frequency range from 0.4GHz to

10GHz is chosen to analyze the data. In this frequency range, the calibration is

good, the normal channel subtraction has less effect and the finite size effect has

less effect on the fluctuation conductivity, and the fluctuation conductivities are

independent of incident microwave power,which will be shown later.

Fig. 4.11 shows a log-log plot of the magnitude |σfl| and the semi-log plot of the

phase φσ of the resulting fluctuation conductivity vs. frequency at different temper-

atures. The power-law behavior |σfl| ∼ ω−(z+2−D)/z corresponds to a straight line in

the log-log plot of |σfl| vs. frequency. To choose the straightest line in Fig. 4.11(a)

to determine Tc, a quadratic fit method is used. From the scaling theory log |σfl(f)|
vs. log f is known to be a convex function below Tc and a concave function above Tc.

Unlike the DC I-V curve where Strachan et al. used an opposite concavity criterion

to determine Tc in a dI/dV plot,[95] it is hard to take the frequency derivative of

|σfl(f)| because of noise. An alternative approach is to do a quadratic fit to the data

on a log-log plot. Below Tc, the curve bends up with a positive coefficient of (log f)2

and above Tc, the curve bends down with a negative coefficient of (log f)2. Table 4.1

shows that the coefficient of the (log f)2 term changes sign between temperatures

89.192K and 89.245K, bracketing Tc for sample xuh139. See Appendix B for more

details about this fit procedure.

The scaling theory also predicts a constant phase angle φσ(ω) at Tc. φσ(ω) vs.

log f is known to be a decreasing function below Tc and an increasing function above

Tc. A linear fit of φσ(ω) vs. log f also has been done and the result shows it to have

a negative slope at 89.192K and a positive slope at 89.245K, which is consistent
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Table 4.1: Quadratic fit result of log(|σfl|)vs. log(f) and linear fit result of φfl vs.

log(f) for sample xuh139 in the frequency range 0.4 to 10GHz

Temperature(K) Quadratic fit for magnitude Linear fit for phase

89.087 +0.0052 log(f)2 − 0.631 log(f) + 11.9 -0.0458 log(f) + 0.937

89.014 +0.0068 log(f)2 − 0.617 log(f) + 11.5 -0.0305 log(f) + 0.743

89.192 +0.0103 log(f)2 − 0.615 log(f) + 11.1 -0.0068 log(f) + 0.462

89.245 -0.0097 log(f)2 − 0.190 log(f) + 8.81 +0.0123 log(f) + 0.221

89.297 -0.0195 log(f)2 − 0.061 log(f) + 7.24 +0.0408 log(f) + 0.110

89.350 -0.0025 log(f)2 − 0.228 log(f) + 6.09 +0.0630 log(f) + 0.376

.

with the quadratic fit result of log|σfl(f)| vs. log f . (see Tab. 4.1) See Appendix B

for more details about this fit procedure.

The next step is to do a linear fit for log |σfl(f)| verses log(f) to get the slope

of log |σfl(f)| at Tc. The slope is almost independent of the frequency range used

to do the linear fit, and it mainly depends on the temperature. The slope and the

corresponding values of z are shown in Table 4.2. The average of the φσ(ω) at Tc

also gives an estimate of z. There is some difference between z values obtained from

the slope of magnitude and from the average of phase. Due to the difficulty of high

frequency calibration, the phase develops a downward curvature at high frequency.

The magnitude is not as sensitive to calibration as the phase part. That is why the z

value that comes from the slope of the magnitude is a little larger than that coming

from the average of the phase. Since the temperatures 89.192K and 89.245K are

bracketing Tc, we can take their average as Tc = 89.22K and interpolate between

them to get value of z, which is z = 1.62.

Adjusting the frequency range used to do the fits, the determined Tc can change

by up to 50mK. The discussion in detail can be found in Appendix B. After carefully
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Table 4.2: Linear fit slope of log |σfl| vs. log(f) and average of φfl for sample xuh139

from 0.4 to 10GHz and corresponding value of z

T(K) 89.087 89.140 89.192 89.245 89.297 89.350

slope of log |σfl| −0.534 −0.481 −0.423 −0.370 −0.302 −0.239

Value of ”z” from log |σfl| 2.15 1.93 1.73 1.58 1.43 1.31

average of φσfl
0.510 0.460 0.399 0.335 0.269 0.210

Value of ”z” from φσfl
2.04 1.85 1.67 1.50 1.37 1.27

checking different frequency range results we conclude that Tc = 89.22 ± 0.05K. It

is clear that value of z from this analysis is very sensitive to the determined Tc, with

dz/dTc ≈ 4K−1. The 0.05 K uncertainty of Tc brings an uncertainty of about 0.20

to the value of z, so z = 1.62±0.20. At this point we can use the determined Tc and

z to estimate a value of ν by data collapse.[91] However, there is a large uncertainty

for value of ν, roughly ν = 1.50 ± 0.50.

So finally from this method we get the critical temperature and the critical

exponents z for sample xuh139

Tc = 89.22 ± 0.05K, z = 1.62 ± 0.20.

There is also an estimation of value of ν,

ν = 1.50 ± 0.50.

4.5 New Data Analysis Method

Wickham and Dorsey verified that the AC conductivity satisfies the FFH scaling

hypothesis and proposal a scaling function above Tc:[106]

S+(y) =
2z2[1 − D−2−z

z
iy − (1 − iy)(D−2+z)/z]

y2(D − 2 − z)(D − 2)
, (4.9)
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where y = ωτfl ∝ ωξz. We find at small y, corresponding to temperatures far above

Tc, the function S+(y) is essentially independent of dimensionality D and z because

the fluctuation contribution is small far above Tc. According to Eq. 4.7, one can

write σfl(T, ω) = σ0(T )S(ω/ω0). Both the phase φσ(≡ tan−1[σfl
2 /σ

fl
1 ]) of σfl and

the magnitude |σfl|/σ0 can be treated as scaled quantities with two temperature-

dependent scaling parameters ω0(T ) and σ0(T ). This suggests a new data collapse

method, pioneered by Kitano et al.[112] They pointed out that the advantage of

this new collapse method is the independence of the two scaling parameters ω0(T )

and σ0(T ). In this new method, the parameters ω0(T ) and σ0(T ) are chosen at each

temperature to collapse φσ(T ) vs. ω/ω0 and |σfl|/σ0(T ) vs. ω/ω0 to smooth and

continuous curves, without a priori determination of Tc or critical exponents.

Figure 4.13: Scaling of phase and magnitude of fluctuation conductivity to determine

ω0(T ) and σ0(T ). (a) φσ vs. ω/ω0(T ); (b) |σfl|/σ0(T ) vs. ω/ω0(T ). Solid lines are

theoretical calculation from Eq. 4.9 for different values of z, assuming D = 3.

First ω0(T ) is determined through a collapse plot of φσ vs. ω/ω0(T ) from high

temperature to low temperature. Using the feature that S+(y) is not sensitive to
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dimensionality D and z far above Tc, for temperature points far above Tc, the ap-

propriate ω0(T ) is chosen to make the measured φσ(ω/ω0(T )) overlap with the theo-

retical prediction from the known scaling function φ(S+(y)). Then at temperatures

closer to Tc where S+(y) starts to depend on D and z, ω0(T ) for each temperature

is chosen to connect smoothly to the existing curve of φσ(ω/ω0(T )) and to make

all the temperature curves collapse into one smooth and continuous curve. This

process continues in the direction of lower temperature until a certain temperature

where φσ(ω/ω0(T )) can not be connected smoothly to the existing curve. In this

way, ω0(T ) for temperature points above Tc can be determined.

To scale the conductivity magnitude, we start with the determined ω0(T ) for

each temperature, then plot |σfl|/σ0(T ) vs. ω/ω0(T ), where σ0(T ), similarly to

ω0(T ), is determined for each temperature to make a smooth and continuous curve

of |σfl|/σ0(T ) vs. ω/ω0(T ).

Figure 4.14: ω0(T ) vs. t and σ0(T ) vs. t for different assumed Tc, t = |T−Tc

Tc
|, for

sample xuh139 and temperature from 89.297K to 89.763K. The error bars of ω0(T )

and σ0(T ) are about the size of points.
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Fig. 4.13 shows the resulting scaling plots of φσ vs. ω/ω0(T ) and |σfl|/σ0(T )

vs. ω/ω0(T ) with the determined ω0(T ) and σ0(T ). The solid lines are theoretical

calculations from Eq. 4.9 for different values of z assuming D = 3. In Fig. 4.13(a),

theoretical curves with larger values of z are at the top and curves with smaller

values of z are at the bottom. In Fig. 4.13(b), the theoretical curves with larger

values of z have larger slope and are at the bottom. Roughly the experimental data

agrees with the green theoretical curve, which is z = 1.5.

From the determined ω0(T ) and σ0(T ) further useful information can be ob-

tained. With the assumption ξ = ξ0|t|−ν , τfl = τ0|t|−νz in the critical regime, which

is about 0.3K to 2K wide for YBCO,[11, 114] the following dependencies should be

expected:

ω0(T ) ∝ 1/τfl ∝ ξ−z ∝ |t|νz (4.10)

σ0(T ) ∝ ξz+2−D ∝ |t|−ν(z+2−D) (4.11)

where t = (T − Tc)/Tc is the reduced temperature. An assumption is made here

that for the correct Tc, ω0(T ) verses t will be a straight line in a log-log plot of slope

νz and log(σ0) vs. log(t) is a straight line of slope −ν(z − 1).

Using this power-law assumption, Tc can be determined. Fig. 4.14 shows ω0(T )

vs. t and σ0(T ) vs. t for different assumed values of Tc. The correct Tc can be

determined from the line showing a pure power-law. Fig. 4.14(a) shows that the

blue line which corresponds to an assumed Tc = 89.25K is straightest. Fig. 4.14(b)

also shows that the blue line is straightest. From these two figures, Tc is consistently

determined to be

Tc = 89.25 ± 0.03K.

According to Eq. 4.10, from the slope at Tc = 89.25K in the log-log plot, the critical

exponents can also be determined. From Fig. 4.14 we find νz = 1.78 ± 0.10 and

−ν(z − 1) = −0.70 ± 0.10, yielding

z = 1.64 ± 0.20, ν = 1.08 ± 0.20.
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This method offers an independent way to determine Tc and to extract the critical

exponents z and ν. The error of this method mainly comes from the choice of ω0(T )

and σ0(T ). Deciding which assumed Tc is correct in Fig. 4.14 does not bring much

error. More data points for ω0(T ) and σ0(T ) in the critical region can reduce the

error of determine Tc and critical exponents.

4.6 Discussion

In the section, we have used two methods to extract z and ν from experimental

fluctuation conductivity data. The first one, an improved conventional method, is

based on the assumption that |σfl| ≈ ω−(z+2−D)/z, φσ = π
2
(z+2−D)/z at Tc. In this

method, determination of Tc is very crucial and the extracted z is sensitive to the

determined Tc. The error in this method mainly comes from the determination of Tc.

In the second method, which is newly developed in this thesis, we scaled the data and

assumed the pure power-law behavior of ω0(T ) and σ0(T ) on reduced temperature

t. The assumption is only true for a certain temperature range near Tc. For sample

xuh139, we find a good power law in the temperature range from Tc to Tc + 0.5K.

From this, we have an estimation of the critical regime above Tc, which is about 0.5K

wide. This estimation is consistent with that reported in the literature.[11, 91, 114]

In this method, the error mainly comes from the determination of ω0(T ) and σ0(T ),

through collapse. Although the directly extracted z and ν from this method have

large error, it is still useful because of its advantage of more precisely determining

Tc.

The improved conventional method is good at determining the value of z for a

given Tc. We can combine the advantages of the two methods together for better

determination of critical exponents. Using the determined Tc from the new method

to extract a value of z by doing temperature interpolation through Table 4.2, we get

z = 1.55 ± 0.12.
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According to the obtained slopes from Fig. 4.14, ν can be determined

ν = 1.15 ± 0.2.

Here the value of z is better determined than the value of ν. The determination of

ν uses the obtained value of z and slopes from Fig. 4.14. Both of them have error

and make the value of ν less well determined.

Comparing the results of the two methods we find that the determined Tc and

dynamical critical exponents z are consistent. A combination of the two methods

makes the result more stringent. Smaller temperature steps and more precise mea-

surement of Ŝ11 help to reduce errors and determine the critical exponents accurately.

Figure 4.15: Data collapse as a check for Tc, critical exponent z and ν for xuh139.

The relatively good data collapse was obtained for Tc = 89.25K,z = 1.55,ν = 1.15.

Both magnitude and phase parts are consistent with the calculated result of the

scaling function Eq.4.9, which are shown as red lines in the figure.

Finally data collapse can be used to verify the existence of a second-order phase

transition. Fig. 4.15 shows that data collapse plots with the determined Tc, z and ν
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Table 4.3: critical temperature Tc ± ΔTc and exponents determined for different

YBCO film samples

Sample Substrate Tc(K) ΔTc(K) z Δz ν Δν

xuh117 NGO 88.90 0.05 1.60 0.15 1.40 0.30

xuh130 NGO 88.23 0.08 1.60 0.20 1.30 0.30

xuh139 NGO 89.25 0.03 1.55 0.12 1.15 0.20

xuh142 NGO 89.62 0.10 1.55 0.25 1.50 0.40

xuh153 NGO 89.97 0.05 1.50 0.15 1.20 0.30

xuh156 STO 89.66 0.10 1.70 0.30 1.30 0.40

.

look good. The scaled data above Tc is in excellent agreement with the Wickham-

Dorsey scaling function S+(ωτfl) shown in red. By combining the two methods the

critical temperature and exponents for this sample were determined:

Tc = 89.25 ± 0.03K, z = 1.55 ± 0.12, ν = 1.15 ± 0.20.

The critical exponents should be independent of sample. To check the results, I

not only repeated measurement on the same sample, but also repeated my experi-

ment on different samples. Films of different thickness were also examined, and the

obtained values of z are independent of the thickness. Table 4.3 shows results on

different samples. These samples are grown under nominally the same conditions

and their properties are similar, so they could improve the statistics for the critical

exponents.

From the table, we get critical exponents:

z = 1.56 ± 0.10, ν = 1.28 ± 0.20.

We see the values of z for different samples are very consistent. The value of

ν is less precisely determined by this experiment and it has a larger error bar.
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The dynamical critical exponent z is consistent with model-E dynamics of the 3D-

XY universality class, which predict z ≈ 1.5 in 3D. Our recent DC conductivity

measurements also gives z = 1.60 ± 0.15, which will be discussed in chapter 7.

The static exponent ν is bigger than the 3DXY prediction, although measure-

ments on thermodynamic properties agree that ν ≈ 0.67. The large value of ν is

found by many transport measurements.[115] For example, Booth et al. obtained

ν = 1.2;[91] Strachan et al. obtained ν = 1.5.[95] It is also predicted by some the-

orists: Lidmar et al. predicted ν ≈ 1.3 and Olson et al. obtained ν = 1.39 ± 0.20

for a sample in a magnetic field.[79][116] Peligrad et al. claimed that ν = 1 close

to Tc and crosses over to ν = 2/3 at the higher temperature range 0.05 < t < 0.12

for YBCO.[105] In this chapter we investigated microwave conductivity at temper-

atures very close to Tc, so that ν is determined in the temperature range t < 0.004.

In a temperature range very close to Tc, sample disorder may affect the value of ν,

which makes the value obtained here larger than what is expected. However, the

dynamical critical exponent z obtained by AC measurement should not be affected

by the disorder.[117]

In this chapter, we investigated fluctuation effects in YBa2Cu3O7−δ thin films

around Tc by taking frequency-dependent microwave conductivity measurements.

We proved that the determination of Tc is crucial for the conventional data analysis

method. With an improved setup, we took measurements at a smaller tempera-

ture increments than ever before. Through an improved conventional data analysis

method and a newly developed analysis method, the critical temperature can be

determined precisely. We obtained a critical exponent z = 1.56±0.10, which is con-

sistent with model-E dynamics of the 3D-XY universality class. Finally the scaling

behavior of the fluctuation conductivity was also shown both above and below the

critical temperature.
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Chapter 5

Power Dependence of the Microwave

Fluctuation Conductivity

Microwave conductivity measurements as a method to test scaling theory and to

obtain the critical exponents has been discussed in chapter 4. When measuring AC

conductivity, one needs to apply a certain current. In chapter 4, I determined the

Tc and obtained the critical exponents with very small applied microwave power,

-46dBm. One natural question is whether a -46dBm microwave power is small

enough to measure the linear response fluctuation conductivity. The other question

is how the different applied microwave current density affects the conductivity and

the extraction of the critical exponents. I will address these two questions in this

chapter.

5.1 Power Dependent Measurements

High power incident microwaves, corresponding to high current density in the sam-

ple, will cause pair breaking of the fluctuating Cooper pairs, decreasing the fluc-

tuation conductivity. The breaking of Cooper pairs by high power microwaves is

an interesting topic, which is being investigated by another student in our group,

Dragos Mircea. In my experiment, I also observed a decrease of fluctuation con-
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ductivity due to high incident microwave power. In addition, for lower power, there

is a linear region, in which the microwave conductivity is independent of incident

power. In the study of DC fluctuation conductivity, Sullivan et al. discussed low

current density behavior and the existence of a current-induced length scale.[94].

This brings up the question of whether and how the current-induced length scale

affects the microwave conductivity. As sketched in Fig. 5.1, I want to investigate the

microwave conductivity at very low current density. This investigation, combined

with the research of others, is not only helpful to clarify theoretical questions about

the critical exponents, but also important in applications for HTS materials.

Figure 5.1: Sketch of the power region for frequency dependent fluctuation conduc-

tivity.

Although lots of experimental and theoretical work has been done to investigate

fluctuation effects, there has been no unified framework that describes the phase

transition of the superconducting state to the normal state in HTSC up to now.

The possibility of obtaining superconducting properties by cooling down HTSC ma-

terials with liquid nitrogen at low cost has fueled a series of commercial applications.

One of the applications of HTSC is to make high-field magnets. Whereas the Hc2

of HTSC is large, researchers have only achieved 1T field with HTSC magnets at

77 K. A clear picture of the properties of HTSC near Tc is needed to build high
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field magnets within the liquid nitrogen temperature range. The other significant

application of HTSC is in the area of microwave passive components (resonators and

filters). Compared with devices fabricated from normal metals, HTSC devices have

lots of advantages. However, a serious issue in the operation of HTSC microwave

passive components arises when the surface impedance becomes power-dependent

and undesirable nonlinear effects can ultimately compromise the benefits of using

HTSC components. To minimize the nonlinear response of HTSC microwave com-

ponents, it is necessary first to understand the nonlinear response of the HTSC

material. To address this issue, there has been much recent work examining the

nonlinear (rf power dependent) surface impedance.[118] However, most of the work

concentrates on the large power end and there are few measurements investigating

nonlinear surface impedance for the small power end.

In this chapter, I will discuss the microwave conductivity of YBa2Cu3O7−δ thin

films around Tc for different input microwave powers. I will focus on how the mi-

crowave fluctuation conductivity deviates from simple scaling theory and how the

deviations systematically depend on the input microwave power at low frequency.

For the power dependent measurement, we still use the Corbino setup to investi-

gate YBCO films deposited via pulsed laser deposition on NGO(110) substrates. To

investigate the power dependence property of the conductivity, frequency-independent

constant applied power is necessary for the measurement. Power-flattening calibra-

tions are carried out at the sample plane for different incident power ranges from

0dBm to -50dBm. After the power-flattening calibrations, the room temperature

calibration is performed for every different incident power. After this, the YBCO

sample is put in and the system is cooled down. At each temperature around Tc,

microwaves with different power were incident on the sample, and reflection coeffi-

cients depending on frequency were measured. Similar to the procedure in Chap. 4,

we obtained the conductivity vs. frequency for different incident microwave power

around Tc.
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5.2 Power Dependent Fluctuation Conductivity

Phenomena

5.2.1 Nonlinearity Effects of Microwave Fluctuation Con-

ductivity σfl –High Power End

To see how nonlinearity affects microwave fluctuation conductivity, we plotted the

fluctuation conductivity vs. frequency for various temperatures at different incident

microwave power in Fig. 5.2. The blue lines were measured with -22dBm of power

while the red lines were measured with -2dBm at the same temperature.

Fig. 5.2 clearly shows that the applied microwave power affects the measured

fluctuation conductivity, particularly at low frequencies. As the applied power in-

creases, the current density also increases and it decreases the magnitude of the

fluctuation conductivity, which is shown in Fig. 5.2(a). Fig. 5.2(b) shows that the

phase part of the fluctuation conductivity is also affected by the applied current

density. Larger current density tends to decrease the phase. Particularly at low fre-

quency, larger current density makes the phase part tend to zero, which corresponds

to ohmic response. The reason is that the critical point is located in the limit of

zero H, J, and ω and the increased applied current should drive the system away

from the transition and thus into the ohmic regime. This is in fact seen in the red

line deviations of Fig. 5.2(b).

Although at low frequency the current density clearly affects the fluctuation

conductivity, it has less effect at higher frequencies. To explain this, let us review

the Fisher, Fisher and Huse(FFH)[54] dynamic scaling function first:

E

J
= ξD−2−zχ±(JξD−1, ωξz, Hξ2, ...). (5.1)

In our measurement, the magnetic field H is small and the scaling dependence on

Hξ2 can be ignored. Then there are two terms left in the scaling function JξD−1
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Figure 5.2: Magnitude |σfl| and phase φσ vs. frequency for various temperatures.

The blue lines were measured with -22dBm of power while the red lines were mea-

sured with -2dBm at the same temperature.
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and ωξz. For higher frequency, the later term ωξz is much larger than JξD−1, so the

current density has less effect at high frequency. At low frequency, ωξz is small, so

the current density, corresponding to the term JξD−1, has more of an effect on the

fluctuation conductivity.

In order to determine the correct critical exponents we need to reduce the JξD−1

term, so we performed the AC measurements at an incident microwave power of

-46 dBm, corresponding to current density 2.2 × 105A/m2 at the inside edge of

the Corbino ring, which is very small and also still gives relatively good sensitivity.

One question here is whether -46 dBm is small enough. This will be discussed

later by combining both AC and DC experiments on the same sample. Before we

move to that, we will focus on the AC measurements first, since there are still some

interesting phenomena to reveal.

5.2.2 Low Frequency Downward Curvature of Fluctuation

Conductivity |σfl(ω)|

In the last chapter, using -46 dBm data the critical temperature Tc = 89.25 ± 0.03

K was determined for sample xuh139. Fig. 5.3(a) shows that the data agree with

scaling theory at high frequency. Very close to Tc, the |σfl| vs. frequency is a straight

line which means a power law behavior. However, at low frequency, |σfl(ω)| starts

to deviate from scaling behavior and has a down turn. In the previous section we

found that the larger applied current density affects the fluctuation conductivity at

low frequency. Here we examine how the low frequency deviation and the down turn

behavior depend on the applied current density.

Fig. 5.3(b) shows the |σfl| vs. frequency for different incident microwave power

at a fixed temperature. At high frequency, all five curves would overlap with each

other if they had not been displaced vertically. The fluctuation conductivity is

almost independent of incident microwave power at high frequency. Quantitatively,
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Figure 5.3: (a) |σfl| vs. frequency at different temperature for input power -46dBm;

(b) |σfl| vs. frequency at a fixed temperature(T=89.140 K) for different power. To

show the differences at low frequency clearly, the curves are offset vertically.

the fit slopes of log |σfl| vs. log(f) of different powers are the same for frequencies

larger than 0.4GHz.

5.2.3 Confidence Check of the Downturn Behavior

The observed power dependent downturn behavior above has not been reported

before. There are also no theoretical predictions for this. So before we do some

analysis and detailed discussion about this phenomenon, we want to make sure that

it is real and not coming from some systematic errors.

To check the reliability, I did several things. At first, I repeated the measurement

on other samples. Similar behavior is observed on different YBCO samples and also

on samples with various thicknesses.

Secondly, I checked the calibration procedure. The re-calibration method that I

use here is the short-only one assuming that the superconducting film far below Tc is
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a perfect conductor. Here firstly I compared the reflection coefficient Ŝ11 of a YBCO

film at 10 K below Tc and the S11 of a bulk silver disk at the same temperature.

I found that both real and imaginary parts of S11 of them are almost the same,

particularly at low frequency. The difference between them is less than 0.05dB

from 10MHz to 25GHz. There are larger differences at very high frequency. These

differences are due to the ir-reproducibility of the connection, because the Ŝ11 is

very sensitive to the connection at very high frequency.

I also tried different calibration methods. For example, using bulk silver as a

perfect short, and a teflon disk as a perfect open, I did a 2-standards re-calibration.

Adding another perfect load (using the difference of the YBCO sample at two tem-

peratures above Tc), we also did a 3-standards full re-calibration. The different

calibration methods only affect the high frequency data, normally above 10 GHz.

However, the low temperature downturn behaviors remain for all the different cali-

bration methods.

Finally, we systematically checked our data processing programs. Professor An-

lage used GL theory with Gaussian fluctuations and calculated the conductance for

a given thickness YBCO film around Tc from 10 MHz to 50 GHz. Then he simu-

lated the reflection coefficient based on the conductance data. He also applied error

coefficients to the Ŝ11. With this ’calculated data file’ and the error coefficients,

I recovered the conductivity of the YBCO film with my data processing programs

successfully. The recovered data is exactly the same as calculated from the model.

According to the above confidence check procedures, I believe that our observed

downturn behaviors at low frequency are real, despite the fact that they had not

been predicted.
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5.2.4 Power Dependent Fluctuation Conductivity at Low

Frequency

|σfl| vs. incident microwave power at different frequencies are plotted in Fig. 5.4. It

is clear that the power dependence behavior of |σfl| varies with frequency. At lower

frequency |σfl| depends on incident microwave power more than at higher frequency.

Fig. 5.4 also shows that at higher frequencies(1 GHz, 5 GHz) |σfl| has almost no

power dependence. As frequency decreases, the incident microwave power starts

to affect the |σfl| and the power dependence becomes stronger. At low frequen-

cies(20MHz, 30MHz and 40MHz), |σfl| strongly depends on the incident power. For

these frequencies, |σfl| vs. incident power increases first as applied power increases.

At some incident power, |σfl| saturates and becomes power independent. However,

at very high power, the |σfl| decreases again.

5.2.5 Applied Current Amplitude

The applied power is directly related to the current density appearing in the sample.

By calculating the time averaged power flowing down the coaxial cable, we can

approximately calculate the applied AC current density.

In general, TEM modes have transmission line signals which behave as

V = F+(t− x/s) + F−(t+ x/s) (5.2)

I =
1

Z0
[F+(t− x/s) − F−(t+ x/s)], (5.3)

where t is time, x is distance along the coax line, and s is the velocity of the signal.

The above voltage V refers to the voltage differences between the inner and outer

conductors of the coax cable at same position x and I refers to the longitudinal

current following in the inner conductor.

In the Corbino disk geometry the rf currents flow in the radial direction, and the

rf current density in the film is proportional to 1/r, where r is the distance from the
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Region IRegion II

Figure 5.4: |σfl| vs. incident microwave power at different frequencies at a fixed

temperature of 89.087 K for sample xuh139.

center of the Corbino disk. The rf current density also depends on the film thickness

and the rf power supplied by the source. If the sample is much thinner than the

appropriate skin depth, the current density will be uniform in the film thickness.

Integrating the current density J(r) over the volume of the Corbino disk, we should

obtain the applied current I, which gives

J(r) = I/2πt0r, (5.4)

where t0 is the film thickness.

The incident power P transferred along the transmission line is given by the

Poynting vector P = (E ×H) integrated over the cross section of the transmission
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line, which gives simply P = I · V . The incident power is usually given as the time

averaged power < P >

< P >=
1

2
ImaxVmax =

1

2

V 2
max

Z0

. (5.5)

In the following discussion, I will use average Vave and Iave (Vave = Vmax/
√

2 and

Iave = Imax/
√

2). For convenience, the subscript ’ave’ will be omitted.

According to Eq. 5.2

V +
0 =

√
P ∗ Z0, (5.6)

V −
0 = V +

0

ZL − Z0

ZL + Z0

= V +
0 S11 (5.7)

where Z0 is the characteristic impedance of the coaxial cable and ZL is the lumped

impedance of the sample. The current traveling through the sample is

I = (V +
0 − V −

0 )/Z0 = (1 − Ŝ11)
√
PZ0 (5.8)

J(r) = (1 − S11)

√
P/Z0

2πrt0
(5.9)

Here J(r) is the time averaged current density at the distance r from the center of

the Corbino disk.

In Fig. 5.5, I show the corresponding current density for different incident mi-

crowave powers for a film thickness of 1300 Å. The black solid line denotes the

current density at the inside edge the Corbino disk where the current density is

larger than what is at the outside edge. The red dotted line gives the current

density at the outside edge of the Corbino disk.

In a typical DC I-V curve measurements on films of comparable thickness, we

found that when the current density is below 1 × 106A/m2, it is in the pure ohmic

regime. When the current density is above 2 × 107A/m2, the sample shows power-

law V-I behavior around Tc. The current density from 1×106A/m2 to 2×107A/m2

is a transition regime.

For -46 dBm incident power, the time averaged current density at the inside

edge of the Crobino disk around Tc is J ≈ 2.2 × 105A/m2. This current density
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Figure 5.5: Corresponding current density vs. incident microwave power for a film

thickness 1300 Å in the Corbino geometry with Ŝ11 ≈ −1.

is very small and corresponds to the pure ohmic regime in DC I-V measurements.

Therefore nonlinearities due to breaking of the fluctuating Cooper pairs by current

density can be ignored for this applied microwave power.

For the incident microwave power of -2 dBm, the corresponding current density

at the inside edge of the Corbino ring is 3.4 × 107A/m2 around Tc. From the

mentioned DC measurements discussed above, we know this current density is large

enough to show clear nonlinearity in the V-I curves. Hence it is not surprising to see

clearly a conductivity decrease, particularly at low frequency. Hence the AC and

DC measurements are consistent with respect to current density nonlinearities.
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5.3 Analysis and possible explanation

After Fisher, Fisher and Huse[54] discussed dynamic scaling for the ac fluctuation

conductivity, Wickham and Dorsey did a theoretical calculation and gave the form

of the scaling function S+(y) above Tc [106]. Peligrad et al. investigated the short-

wave length cutoff effects of the AC fluctuation conductivity of superconductors and

discussed the limitation of the scaling theory[105]. The high frequency behavior,

which is the power-independent part, is consistent with these theoretical works.

However, the power dependence behavior at low frequency showed by Figs. 5.3 and

5.4 can not be explained by these theories.

Figure 5.6: Sketch of the power, frequency and thickness relation in frequency de-

pendent fluctuation conductivity. d0,d1,d2,d3 correspond to different thickness and

d0 > d1 > d2 > d3. The lines denote the locus of (Prf ,ω) points where the probed

length scale L is equal to the thickness of the film. The probed length scale L is

shorter than thickness d outside the line, and longer than the thickness inside the

line.
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Since the applied power is directly related to the current density, it makes us

consider the effect of current density first. In a simple physical model, fluctuations

can be assumed as closed circular vortex loops of radius r. In an infinite supercon-

ductor with no applied current, vortex loops of different size occur with different

probabilities as thermal fluctuations. When a current with density J is applied, some

vortex loops(with large r) will blow out to infinite size; this process leads to dissi-

pation. Some vortex loops(with small r) shrink and annihilate; this process leads

to no dissipation. The current density induced length scale separates vortex loops

into two categories, depending on their ultimate fate. The shrinking of a vortex

takes time. The shrinking time depends on the size of the vortex. Smaller vortices

shrink faster than larger vortices and this corresponds to smaller time scales. So

this makes the size of a vortex related to a time scale. In AC measurements, small

frequency means large length scale, so one investigates large size vortex loops. For

the real measurement, the samples have finite size. The size of the sample will limit

the size of the vortex. The above thoughts are a qualitative discussion about the

possible length scales in AC measurement.

The effect of a current-induced length scale has been discussed by Sullivan et

al. for the normal state to superconducting state phase transition in zero field[94].

From their work, an applied current density J probes fluctuations of typical size

LJ = (ckBT/Φ0J)1/2, where Φ0 is the magnetic flux quantum and c is a constant.

Hence as power decreases, J decreases and LJ increases. The similarity of dynamical

scaling of the ac fluctuation σfl(T, ω) ≈ ξz+2−DS±(ωτfl) and the dc scaling E/J ≈
ξD−2−zF±(JξD−1) makes us consider the possibility of a typical frequency probed

length scale of the microwave measurement, Lω. Low frequency probes larger sizes

and high frequency probes smaller sizes. At low frequency and small power, both

LJ and Lω increase. The probed length scale may be affected by both LJ and Lω,

and may also be limited by the thickness of the sample. This then may cause the

unusual power dependence behavior. This is rough thinking at the moment and a
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schematic diagram of the relation between power, frequency and thickness is shown

in Fig. 5.6.

5.3.1 Current-induced Length Scale

To understand the dissipation process near the phase transition, I discuss in detail

the current-induced length scale and its physical meanings in Appendix A. Here I

will just give a brief introduction to this length scale. Basically, assuming ε(r) is

the energy per unit length of the vortex loop of radius r, then the energy of such a

loop can be written as

Uloop = 2πrε(r) (5.10)

Plausibly we can assume that the typical total energy of a planar vortex loop of size

rthermal is equal to kBT . Then simply we have

rthermal =
kBT

2πε
. (5.11)

Next consider that a current per unit area J is applied to a plane perpendicular to

the area of the loop. The total Lorentz force on the loop is

Fext = 2πrJΦ0. (5.12)

Taking minus one times the derivative of Eq. 5.10 gives the force that the loop exerts

on itself. Summing the forces and finding the point where the force is equal to zero

leads to a critical loop size

rblowout =
ε

Φ0J
, (5.13)

where, for simplicity, ε(r) is assumed to be independent of r.

Physically, if a vortex loop has r > rblowout, the external current ”blows out” the

loop to infinite size; this process leads to dissipation. If r < rblowout, the vortex loop

shrinks and annihilates.
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Here is the physical significance of comparing the lengths, rblowout and rthermal to

each other. If rthermal � rblowout, the current is probing a length scale where there

are very few vortices. The current thus acts as a very small perturbation on the

system. If rthermal � rblowout , the current is probing a very short length scale, and

a large portion of the intrinsic vortex population is being disrupted by the current.

The point where rthermal = rblowout thus marks a crossover in the behavior from

current acting as a small perturbation to current acting as a large perturbation.

What is the physical significance of comparing the various lengths, rblowout and

rthermal, Eqs. A.8 and A.10, to the film thickness d? It is plausible to say rthermal � d

is the three-dimensional limit, while rthermal � d is the two-dimensional limit, since

in the second case most of the vortex loops are interrupted by the film thickness,

while in the first case they are not. This is true as far as it goes, but it misses the

key point that an applied current probes physics at the scale of rblowout and larger,

as discussed above. Thus, even in the limit rthermal � d, if rblowout is small enough,

it will probe physics on length scales smaller than d, and thus the measurement

will not be affected by the finite thickness of the film. What is required is that the

current probes a significant fraction of the loop population and also probes lengths

on the scale of the film thickness. For this to be true, it is reasonable to require that

rblowout = rthermal ≡ LJ (5.14)

Combining Eqs. A.8,A.10 and A.11 gives

LJ = (
kT

2πΦ0J
)

1
2 (5.15)

This suggests the following physical description for LJ : For any J there is a length

scale LJ , given by Eq. A.12, such that roughly half the equilibrium (zero current)

vortex population is blown out by J , and the other half are not. This is the length

that one should compare to the film thickness for seeing whether or not the measure-

ments are in the two or three dimensional limit. The requirements are that there
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be a significant fraction of the loops that feel the film thickness, and, in addition,

that the current is probing the same length scale.

5.3.2 Frequency-induced Length Scale

In this section, we will discuss the frequency-induced length scale. First, we start

from the time dependent Ginzburg Landau(TDGL) theory to deduce the frequency-

induced length scale.

Frequency induced length scale from TDGL theory

The coherence length near Tc can be written in the following form according to Eq.

4.24 of Tinkham’s book ([15])

ξ(T ) = 0.74
ξ0

(1 − t)1/2
, pure (5.16)

ξ(T ) = 0.855
(ξ0l)

1/2

(1 − t)1/2
, dirty (5.17)

where ξ0 = a �VF

kBTc
and a = 0.18 for BCS theory. When discussing the time depen-

dence of fluctuations, Tinkham also gave a relaxation time for fluctuations of wave

number k:

τk =
τ0

1 + k2ξ2
(5.18)

τ0 =
π�

8kB(T − Tc)
. (5.19)

Now let us make Eq. 5.18 look like a scaling relation. To do this, we rewrite Eq.

5.16 as

ξ(T ) =
ξ(0)

(1 − t)1/2
(5.20)

Note that ξ(0) �= ξ0. Then 1 − t = [ ξ(0)
ξ(T )

]2, plug this into Eq. 5.18, which can be

written

τ0 =
π�

8kBTc

1

|1 − t| (5.21)
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To get

τ0 =
π�

8kBTc
[
ξ(T )

ξ(0)
]2 (5.22)

Multiply both sides of the above equation by ω:

ωτ0 = ω
π�

8kBTc
[
ξ(T )

ξ(0)
]2 (5.23)

This suggests defining an Lω such that

ωL2
ω

π�

8kBTc

1

ξ(0)2
≡ C, (5.24)

where C ∼ 1, then

Lω = [
8C

2π2

kBTc

�

1

f
]1/2ξ(0). (5.25)

Taking T ∼ 90K, kB = 1.38 × 10−23J/K and � = 1.05 × 10−34J · s, we get

Lω = 2.19 × 106[
C

f
]1/2ξ(0), (5.26)

where f is in Hz. This is quite interesting, and suggests that a cross over frequency

(where Lω = film thickness) may play a role at the lower end of our frequency range.

The next thing to do is to generalize to the case where z �= 2. Starting with Eq.

5.22, write

τ0 =
�

kBTc
[
ξ(T )

ξ(0)
]z (5.27)

An analog of Eq. 5.25 can be obtained

Lω = [
8C

2π2

kBTc

�f
]1/zξ(0) (5.28)

Here Lω ∼ f−1/z obeys the scaling ansatz. Numerically

Lω = [
4.79 × 1012C

f
]1/zξ(0) (5.29)
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Frequency-induced length scale from other models

Petter Minnhagen gave a systematic review of the two-dimensional Coulomb gas

model and its connection to vortex fluctuations in two-dimensional superfluids.[186]

In his paper, he discussed the frequency-dependent screening and gave the following

dynamical length scale

Lω =

√
14D

ω
(5.30)

where D is called the dissipation constant, which can be written as kBT · μ̃, μ̃ is

vortex mobility

μ̃ =
(ξe∗)2

2�2πσN

, (5.31)

where σN is the 2D conductivity, and can be approximated as σ3D · ξ(ξ ∼ 10Å).

The Lω deduced from the two different methods above have some differences.

However, both of them have similar frequency dependent behavior. In addition,

for the same frequency, the calculated Lω from the two methods are close. In the

following discussion, we will use a frequency-induced length scale from Minnhagen’s

paper, which is

Lω =

√
14D

ω
(5.32)

5.3.3 Power and Frequency Dependent Fluctuation Con-

ductivity

Now we have estimates of the current-induced length scale and frequency-induced

length scales. As the current density J decreases, the current-induced length scale

LJ increases. As the frequency ω decreases, the frequency-induced length scale Lω

also increases. From the experimental data in Figs. 5.2 and 5.3, we know there is

less power dependence in the high frequency range, in which the Lω is small. When
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Lω is large, which means at low frequency, there is large power dependence. Let us

review the dynamical scaling of the frequency and current density:

σ = ξz+2−DS±(ωξ2, Jξz−1) (5.33)

When ω is small, then the second term Jξz−1 can have a larger effect. Using the

language of length scales, we can claim that the smaller length scale will dominate

the behavior of the scaling function. In order to understand these length scales and

also use them to explain our data, we compare these two length scales first. When

they are equal,

Lω = LJ ⇒
√

14D

ω
=

√
kBT

Φ0J
(5.34)

So

J =
kBT

14Φ0D
ω ≡ Xparaω (5.35)

Here we defined kBT
14Φ0D

as an X-parameter, Xpara. Taking T ∼ 90K, σ ∼ 5×105S/m

and GL constant ξGL ∼ 1nm, Xpara = 0.074A · sec/Rad ·m2. Fig. 5.7 compares the

domains where the current-induced and frequency-induced length scales dominate.

As for the behavior in region II of Fig. 5.4, it can not be simply explained by

these two length scales. We need to consider another length scale, which is the

thickness of the film. For DC VI characteristic measurement, the current-induced

length scale LJ has been compared to the film thickness d. For any J there is a

length scale LJ , given by Eq. A.12, such that roughly half the equilibrium (zero

current) vortex population is blown out by J , and the other half are not. This

is the length that one should compare to the film thickness for seeing whether or

not the measurements are in the two or three dimensional limit. Only if there is

a significant fraction of the loops that feel the film thickness, and, in addition, the

current is probing on the same length scale, then the measurements are in the two

dimensional limit. For AC measurement, there is also a frequency-induced length
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Figure 5.7: Plot of current density and frequency at which the current-induced and

frequency-induced length scales are equal. The solid line in the figure gives the

boundary LJ = Lω. On the right side, Lω < LJ , so the frequency induced-length

scale dominates. We expect to observe more frequency dependent behavior. On the

left side of the line, Lω > LJ , and more current induced nonlinear effects will be

observed. The horizonal and vertical dashed lines shows when LJ = d and Lω = d,

respectively, for film thickness d = 130nm.
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scale. The probed length scale and the fluctuation conductivity will both be affected

by frequency and current density. Here a plausible expression for the probed length

scale for AC measurement can be written as

1

LAC
=

1

LJ
+

1

Lω
. (5.36)

This formula is proposed because it has the correct limits: LAC = LJ when LJ � Lω

and LAC = Lω when LJ � Lω. It also interpolates smoothly between the two

limits. Theoretical work to conform or correct Eq. 5.36 would be very useful. When

LAC approaches the thickness of the film, there comes the finite size effect and the

fluctuation conductivity will show deviations from the scaling theory.

Fig. 5.8 summarizes the length scales in an AC measurement in terms of ex-

perimental quantities. The dotted line in the figure gives the boundary LJ = Lω.

On the right side of the dotted line, when Lω � LJ , the frequency induced length

scale dominate the fluctuation conductivity. We observe mainly frequency depen-

dent behavior of the fluctuation conductivity. On the left side of the dotted line,

when Lω � LJ , current-induced nonlinear effects will dominate the behavior. This

explains the features shown in Fig. 5.2 and Fig. 5.4, where the current density has

less effect on the fluctuation conductivity at high frequency and larger effect at low

frequency.

At low frequency and small current density, the probed length scale LAC may

approach the thickness of the sample. When LAC is close to the thickness of the

sample, the thickness of the film will finally limit the probed size of the fluctuation.

Hence deviations from the general scaling theory will happen. This is the reason for

the downturn behavior at low frequency of |σ(ω)| in Fig. 5.3. From Fig. 5.8, we know

that for higher incident power, the length LAC approaches the thickness of the sam-

ple at lower frequency, and for lower incident microwave power, the LAC approaches

the thickness of the sample at higher frequency. This explains the feature seen

in Fig. 5.3.(b) that the fluctuation conductivity measured at lower incident power
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deviates from scaling theory at higher frequency and the fluctuation conductivity

measured at higher incident power deviates from scaling theory at lower frequency.

In AC measurements, we want to probe the frequency dependent fluctuation

conductivity. Hence we choose to stay at low J but high ω. In this region we

can find the true critical behavior without getting into finite-size effect difficulties.

However, at low current density J and low frequency ω, LAC > d, the critical

behavior will be destroyed by finite-size effects. In this region, we can not observe

the phase transition. So the observed fluctuation conductivity at low frequency can

not be explained by scaling theory.

If we stay at low ω but high J , we will mainly probe the current density dependent

conductivity. Particularly for ω = 0, which corresponds to the DC conductivity

measurements. I will discuss this question in the next chapter.

153



Figure 5.8: Summary of length scales and finite size effects in AC measurements of

fluctuation conductivity. The dotted line in the figure gives the boundary LJ = Lω.

On the right side, when Lω � LJ , the frequency-induced length scale dominates.

We observe mainly frequency-dependent behavior of fluctuation conductivity. On

the left side, when Lω � LJ , current induced nonlinear effects will dominate the

behavior of fluctuation conductivity. At low frequency and small current density,

the probed length scale LAC approaches the thickness of the sample. The four curves

correspond to LAC =100nm, 130nm, 200nm and 300nm, respectively.
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Chapter 6

DC and AC Conductivity Measurements

on the Same Sample

In the previous chapters we investigated the normal to superconducting phase tran-

sition through microwave conductivity measurements. We studied the length scales

in AC measurements and found that a small applied power data should be used

to determine the Tc and critical exponents. With -46dBm of applied microwave

power we determined the Tc and critical exponents for YBa2Cu3O7−δ thin films.

In this chapter, we will combine the DC and AC measurements on the same film

to verify that the -46dBm applied power is small enough for determination of the

critical exponents. The DC VI characteristic measurement is another way to probe

fluctuations and determine critical exponents. For DC measurements, we use a

specially-designed low-field (measured to be less than 0.3 mgauss) low-noise probe.

If we are able to obtain consistent results by the two methods, the results will be

more reliable than if obtained in only one experiment. If the results are inconsistent,

having independent experiments provides diagnostic information to help resolve the

disagreement.
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6.1 DC scaling

DC scaling was discussed in Chap. 3. The DC scaling equation is given in the FFH

paper[54]

E

J
= ξD−2−zχ±(Jφ0ξ

D−1/cT ). (6.1)

The above scaling function χ± has two useful limits. First, above Tc, the function

χ+(x) approaches a constant as x → 0. Thus, in the limit of low current density

J → 0, the Eq. 6.1 becomes

E

J
∝ ξD−2−z ∝ (T − Tc)

ν(z+2−D). (6.2)

This limit is only valid above Tc and we can not use the same argument below Tc

since one expect the resistance to vanish as J → 0 below Tc.

The next limit is for x → ∞, which would occur either through J → ∞ or

T → Tc. In this limit, E/J must be finite, which requires that

χ+(x) ≈ χ−(x) ∼ x(z+2−D)/(D−1). (6.3)

This results in

E ∼ J (z+2−D)/(D−1) (6.4)

The conventional method suggests that one choose the critical isotherm – the

first isotherm without an ohmic tail – as Tc. Douglas R. Strachan and Matthew

C. Sullivan showed that the conventional data analysis and its accompanying data

collapse can not uniquely determine the critical parameters.[18, 89]. To resolve this,

they proposed the opposite concavity criterion in a derivative plot of the data. This

criterion is easiest to see on a plot of d log(E)/d log(J) vs. J . Taking the derivative

of Eq. 6.1 we have (
∂ lnE

∂ ln J

)
T

= G±(JξD−1), (6.5)

At Tc, with the assumption of D=3, we obtain(
∂ lnE

∂ ln J

)
Tc

= (z + 1)/2. (6.6)
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So in a derivative plot there should be a horizontal line at T = Tc whose intercept

should give us a value for z. The expected derivative plot is sketched in Fig. 3.3.

For a simple geometry system, if E ∝ V and J ∝ I, then the geometrical factors

can be absorbed into the unknown functions χ± and written as[53, 54]:

V

I
= ξD−2−zF±(IξD−1) (6.7)

The two limits above can also be applied here. So by taking data of voltage vs.

current (V − I) at different temperatures over many decades of current and voltage,

we can probe the fluctuation conductivity and determine the critical exponents.

6.2 Experimental Procedure

6.2.1 Introduction to the DC Experiment

The AC experimental technique has been introduced in the previous chapters. Here

I want to do both AC and DC measurement on the same film. On the surface, the

DC experiment is simple: apply a current and then measure a voltage. However,

the measurement is taken close to Tc and the measured voltage is normally very

small. For these reasons, excellent temperature control, a low noise environment

and a sensitive voltmeter and current source are needed.

A current is applied through a patterned bridge. Bridges of different dimensions

were used. Bridges are specified by w × l, where l is the length of the bridge and

w is the width. The current through the bridge can be written as I = J × wd,

where d is the thickness of the film and J is the current density in the bridge. A

typical bridge is 8 × 40μm, and such a bridge is shown in Fig. 6.1 Current flows

from I+ to I− and the voltage is measured between V+ and V−, which is a typical

4-probe measurement. There are 4 larger gold contact pads(1.5mm× 1.5mm each)

connected to each lead. They are not shown in this figure.
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Figure 6.1: YBCO bridge pattern (8μm×40μm) for sample xuh112. YBCO is black

and the substrate is grey.

The voltage leads are directly connected to the bridge and measure the voltage

drop across the bridge. In the experiment, the voltage leads are connected to the

voltmeter from the top of the probe through various stages of wiring, solder joints,

copper wires and gold wires. The connections between different metals cause thermal

emfs, which are around Vth ∼ 1μV . [89] To remove these emfs, we reverse the

direction of current and measure the voltage one more time. The thermal emfs in

the leads will not switch sign. By taking the difference of the voltage measured

while switching the polarity of the current, the voltage drop on the sample can be

obtained as,

V =
V (I+) − V (I−)

2
=

(V (I+) + Vth) − (−V (I−) + Vth)

2
(6.8)

The time for a reverse-polarity measurement is short, usually less than 0.5 s. The

thermal voltage are expected to not change on that time scale.

To obtain high precision results, V is measured many times and and the average,

V̄ , is calculated. In this process the standard deviation, σV̄ , is also calculated. For
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each temperature, the measurement continues until a pre-set limit is achieved, which

is normally V̄ /σV̄ > 1000 or σV̄ < 1nV . The later criterion normally happens when

the voltage is near the resolution of the volt meter(≈ 1nV ).

The experimental and the DC transport probe have been discussed in detail in

[89], and is not repeated here.

6.2.2 Procedure of Combined AC and DC Experiments

The DC experiment requires patterning the YBCO film into a small bridge, making

it impossible to perform AC measurement on the film again. So for both AC and

DC experiments on the same film, the AC measurement is taken first and then the

DC measurement.

The AC measurement is the same as we introduced in chapter 4. After measuring

the microwave conductivity, I prepare the film for a DC experiment. To do so, the

standard photolithography method is used. The photoresist used is Shipley S-1813

resist. It was spun on the samples at 5000 rpm for 45 s, giving about 1 μm thickness

of photoresist. Afterwards the films were baked for 1 minute at 90 ◦C. Then part of

the film is exposed to UV light (λ = 365 nm) at 8 mW/cm2 for 12.5 s. The exposed

photoresist is removed by Shipley developer, a 1:1 ratio of water and CD-30. The

develop time is about 20 seconds. Through the above method, bridges of 2 μm

width and larger can be made.

In the above process, the mask used is the normal one for DC measurement.

However, due to the previous AC measurement, part of the sample surface is covered

by gold. In this case the mask has to be placed in an appropriate position and

direction. Fig. 6.2 shows how to put the mask in place on the Corbino disk. The

mask place is adjusted in order that the bridge stays on the Corbino ring and

also four leads stay on the sample. If appropriately adjusted, the gold contact

on the sample for Corbino measurement can still be used as contact leads for DC
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Figure 6.2: Schematic of the pattened bridge for DC measurement on samples after

AC measurement. (a) YBCO samples after AC measurement. Part of the surface

is covered with gold. (b) YBCO samples processed for DC I-V measurements after

AC measurement. The bridge is adjusted on the Corbino ring. The picture showed

only part of the processed sample, and the leads do not short out.
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measurement.

After the bridge pattern is made on top of the film, the extra YBCO and gold

must be removed. However, when etching gold, the gold etchant will damage the

YBCO sample. I tried wet etches many times, but never successfully obtained even

one good YBCO bridge. An alternative etching process had to be developed.

In an ion mill, argon atoms are stripped of their electrons and accelerated towards

the sample. Before impact, they are neutralized with an electron beam. The argon

atoms hit the sample with such force that atoms on the sample are knocked free.

The photoresist is much thicker than the sample (1 μm compared to 2000 Å), and

its mill rate is slower (typically half that of YBCO), so the exposed YBCO will

be removed before the photoresist, leaving the YBCO underneath the pattern of

photoresist untouched.[89]

The ion mill can make very exact patterns and avoids any over-etching, which

is very good. However, the disadvantage is that when the atoms hit the sample at

high speeds the sample can be heated. This heat may drive oxygen from the sample

and change its superconducting properties since the sample is put in vacuum when

doing milling. To avoid this disadvantage, I use a relatively small milling rate and

also try to keep good thermal contact between sample substrate and the mill stage,

which is water-cooled to avoid heating.

After removing the extra YBCO and gold, the sample is glued to the DC stage

by GE vanish and wires are attached to the sample. The remaining steps are just

the standard DC experiment procedures, which have been discussed in [89] by M.

S. Sullivan.
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6.3 Experimental Results and Discussion

6.3.1 DC experimental results

In Fig. 6.3,we present an E-J plot of sample xuh139 in a large temperature range.

We have measured the microwave conductivity of this sample and the results have

been discussed in previous chapters. The isotherms in Fig. 6.3 differ by 0.05 K from

90.050 K to 92.000 K. In order to analyze the DC experiment data, D. R. Strachan

proposed the opposite concavity criterion to determine Tc and the critical exponent

z.[18, 95]. However from this E-J plot, I can not find a single straight line that

separates the isotherms into two groups which are concave and convex exclusively.

Some curves have negative curvature at high current density and positive curvature

at low current density, and exhibit ohmic behavior at even lower current density.

This is due to finite size effects, which produce ohmic response even below the

transition temperature Tc for very small current density. Because of finite size

effects, the conventional analysis that chooses Tc as the first isotherm that separates

the isotherms with low current ohmic tail from ones without should not apply. So

we should use the d logE/d logJ vs. J plot, derivative plot, to determine Tc.

Fig. 6.4 shows a derivative plot of sample xuh139. The isotherms differ by 0.02 K

from 91.38 K to 90.98 K. Because of the finite size effect, there is no isotherm that is

horizontal over the entire range of current density. All the isotherms tend towards

d logE/d log J = 1 at low current density, which corresponds to ohmic behavior.

This is true even for isotherms that are clearly below Tc. Hence we should use

the higher current density data to determine Tc and the critical exponent. Fig. 6.3

shows that the isotherm at 91.220 K is horizontal at high current density. Below

91.220 K, the isotherms bend up corresponding to a convex E-J curve. Above 91.220

K, the isotherms bend down corresponding to a concave E-J curve. So from Fig.

6.3, the critical temperature is about 91.220 K and the critical exponent z is about

1.75 ± 0.1. The error bar of Tc is set by the temperature step of the measurement,
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Figure 6.3: E-J isotherms for sample xuh139, performed after the AC experiment.
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Figure 6.4: Derivative plot for xuh139 in zero magnetic field.

164



0.02K.

Fig. 6.3 shows an E-J plot of this sample over a larger temperature range. The

thicker isotherms span the Tc. In this E-J plot all the measurable isotherms have

slope 1 for current density below 1× 106A/m2 around Tc. In derivative plot, we see

d logE/d log J ≈ 1 for current density below 1× 106A/m2. From this we know that

the current density below 1 × 106A/m2 will have only ohmic response around Tc.

In microwave conductivity measurement, we used -46dBm applied power to ex-

tract the critical exponent in chapter 4. For -46 dBm incident power and T ∼= Tc,

the time averaged current density at the inner edge of the Corbino disk J ≈
2.2 × 105A/m2. Fig. 6.3 and 6.4 show there is only ohmic response on around

Tc for the current density below 1 × 106A/m2. This means for -46 dBm incident

power the fluctuation conductivity is not affected by the current density (Jξ2 argu-

ment in the conductivity scaling function), but depends only on frequency. So it is

appropriate to determine Tc and critical exponents with -46dBm microwave power

and the high frequency part of the data. A summary of the length scales and finite

size effects in AC measurements has been given in Fig. 5.8 of chapter 5.

6.3.2 Comparison with the AC Experimental Results

We have performed both AC and DC experiments on this sample. Now let us com-

pare the results from both methods. First consider Tc and z. From AC measurement

we obtained:Tc = 89.25 ± 0.03K, z = 1.55 ± 0.12. Here the above DC measurement

Tc = 91.22 ± 0.02K, z = 1.75 ± 0.10.

The difference of the Tc is due to the different thermal lag of the two systems.

Although the thermometers are placed as close as possible to the sample, there is

some distance to the sample in both experimental setups. The existing thermal

gradient between the thermometer and the sample makes for a certain temperature

difference between the thermometer and the sample, which I call thermal lag. The
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thermal lags for different probes are different. In the DC experiment, special tech-

niques have been utilized to keep the thermal stability and decrease the temperature

gradient. In this case I believe the thermal lag is very small( 20 mK). However in

the AC experiment, the sample is in direct contact with the coaxial cable, which

is directly connected to a room temperature instrument. Also the thermometer is

located between the sample and the liquid He coolant, and the thermal lag is rela-

tively large. The resistance vs. temperature(R vs. T) plots from the AC and DC

experiment have a 2 K temperature offset, which is exactly the difference of the

determined Tc from these two methods. Hence the determined Tc from both the AC

and DC experiments are consistent.

The value of z determined from DC measurement is a little larger then z obtained

from the AC measurement although we expect them to be the same. We need

to carefully examine diagnostic information from two experiments to resolve the

disagreement.

First we tried to repeat the experiment(both DC and AC measurement on the

same sample) for different samples. This is difficult, and I have only successfully

performed both experiments on 6 samples in three years. The samples name are

xuh083, xuh111, xuh112, xuh139, xuh142 and xuh156. The microwave conductivity

measurements were carried out only at -22 dBm for the first three samples, which

made the their AC experimental results are less reliable. So we will concentrate on

the last three samples. Here xuh139 and xuh142 are YBCO on NGO substrate, and

xuh156 is YBCO on STO substrate.

For both samples xuh139 and xuh142, the z value from DC measurement is larger

than z obtained from AC measurement. Also from the previous AC work, Tab. 4.3

shows that the AC results are pretty consistent, and the value of z = 1.56±0.10 for

NGO samples. The AC result of xuh156(YBCO on STO substrate) is not as reliable

as NGO substrate results because the large dielectric constant of STO substrate

makes for only a narrow band of the frequency data useful for AC data analysis.
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Table 6.1: Comparison of results for both AC and DC experimental measurements

on the same films

Measurement method AC DC

Sample Substrate Tc ± ΔTc(K) z ± Δz Tc ± ΔTc(K) z ± Δz

xuh139 NGO 89.25 ± 0.03 1.55 ± 0.12 91.22 ± 0.02 1.75 ± 0.10

xuh142 NGO 89.62 ± 0.10 1.55 ± 0.25 91.60 ± 0.04 1.7 ± 0.15

xuh156 STO 89.66 ± 0.10 1.70 ± 0.30 91.66 ± 0.02 1.60 ± 0.10

The interesting result here is that the DC measurement on STO substrate gives

z ≈ 1.60, which is quite close to the AC measurement results on NGO substrate.

6.3.3 Other DC Experimental Results

To clarify these issues, we repeated the DC experiment on different samples including

both STO and NGO substrates. First a summary of my work on NGO substrates is

shown in Tab. 6.2. I see the value of z ranges from 1.54 to 2.06 with relatively large

error bar. The mean value is z = 1.78 ± 0.18. This is a strange value, just between

1.5, which corresponds to Model-E dynamics of 3D-XY and 2, which corresponds

to Model-A dynamics of 3D-XY.

We carefully analyzed the effect of Tc, resistivity and thickness of the sample

on the determined critical exponent z. We found some systematic relation between

Tc and the obtained value of z, as shown in Fig. 6.5. We see that as the sample

Tc increases it tends to give a smaller value of z for these YBCO samples on NGO

substrate. A sample with higher Tc is normally more homogeneous(with sharper

transitions temperature), has less disorder, and corresponds to higher quality sam-

ple. The effect of inhomogeneity and disorder on the static critical exponents ν has

been discussed [79][116][105]. However, there is less discussion about these effect

on the dynamical critical exponents z. It is tend to believe that the determined z
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Table 6.2: Results of DC measurement on NGO substrate, the bridge sizes are all

8μm× 40μm. The * marks the sample finished both AC and DC experiments.

Sample Tc (K) ΔTc (K) z Δz

xuh111 90.72 0.02 2.06 0.06

xuh112 90.36 0.02 2.00 0.06

xuh131 91.23 0.04 1.66 0.15

xuh138 91.56 0.02 1.62 0.15

xuh139* 91.22 0.02 1.75 0.10

xuh142* 91.42 0.02 1.74 0.15

xuh150 90.64 0.02 1.94 0.15

xuh151 90.8 0.02 1.92 0.15

xuh165 91.66 0.03 1.66 0.15

xuh166 91.68 0.04 1.54 0.15

.

168



Figure 6.5: Obtained value of z vs. Tc for different YBCO samples on NGO sub-

strates. the bridge sizes are all 8 × 40μm.

value from the higher quality sample is more close to the intrinsic value of z. Tab.

6.2 gives the z = 1.54± 0.12 for sample xuh166 with highest Tc. From this point of

view, DC and AC measurement results are consistent with each other.

The proposed argument above need to be tested. There are two questions here

need to be clarified. One is that how and why the obtained values of z are dependent

on the Tc of the sample. To systematically answer this question more theoretical

and theoretical works are required. I will only give some qualitative discussion in

this thesis. The other question is whether the highest Tc sample shown in Fig. 6.5

is homogeneous enough and has low enough disorder to give us intrinsic value of z.

We did some experiments to clarify the second question.

The STO substrate normally gives films with higher Tc, sharper transition and
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Figure 6.6: Obtained value of z vs. Tc for different YBCO samples. The bridge sizes

are all 8 × 40μm for films.

smaller resistivity than NGO substrate. So I also performed DC measurements on

YBCO films grown on some STO substrates. Some of my results, and those of

others, are shown in the Table. 6.3. In addition, measurements on high quality

YBCO untwinned crystals, which have less disorder and more homogeneous than

any known films, have been performed by Su Li.[139] The results are also shown in

Table. 6.3.

The values of z for different samples are very consistent, particularly for small

bridge sizes 8 × 40μm. Taking an average of z for the 7 samples of bridge sizes

8 × 40μm, I obtained z = 1.57 ± 0.08. Averaging over all 12 samples, I obtained

z = 1.56±0.14. These results are consistent with z value obtained from the highest

Tc YBCO samples on NGO substrates. The discussion about the bridge size has
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Table 6.3: Results of DC measurement on YBCO samples on STO substrate and

YBCO crystals. The first 7 samples from xuh156 to MCS136 are measured with the

bridge sizes 8 × 40μm. The next 5 samples are with bridge 20 × 100μm, and the

last two samples are YBCO crystals.

Sample Tc (K) ΔTc (K) z Δz bridge size

Xuh156 91.66 0.02 1.60 0.15 8 × 40μm

Su113 91.825 0.02 1.55 0.15 8 × 40μm

Zhengli14 90.725 0.02 1.66 0.15 8 × 40μm

Zhengli26 92.17 0.02 1.44 0.15 8 × 40μm

MCS120 92.05 0.05 1.57 0.15 8 × 40μm

MCS124 91.62 0.04 1.58 0.15 8 × 40μm

MCS136 91.825 0.04 1.64 0.15 8 × 40μm

MCS138 91.925 0.02 1.84 0.15 20 × 100μm

MCS139 91.66 0.03 1.46 0.15 20 × 100μm

MCS145 91.68 0.05 1.42 0.15 20 × 100μm

MCS146 91.46 0.04 1.66 0.15 20 × 100μm

MCS160 92.64 0.04 1.34 0.15 20 × 100μm

CrystalI 93.457 0.005 1.55 0.20 crystal

CrystalII 93.836 0.005 1.46 0.20 crystal

.
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Figure 6.7: Schematic of heating and the finite size effect influence on derivative E-J

plot. The solid line denotes the measured dLog(E)dLog(J) vs. J that is chosen as

Tc. The dashed line denotes what the dLog(E)/dLog(J) vs. J curve might be if the

finite size effect and heating influence could be removed for this temperature.

been presented in Su Li’s thesis.[139] Basically samples with small bridge size are

more appropriate to determine Tc and the value of z. I will not repeat the arguments

again, but just use small bridge data as result.

Fig. 6.6 shows the obtained value of z vs. Tc for different YBCO samples. The

plot shows that the obtained values of z are dependent on the Tc for samples with

lower Tc(less than 91.60 K) and independent of the Tc for higher Tc samples(higher

than 91.60 K). Combined with the results of the high quality untwinned crystals,

we believe that samples with higher Tc give intrinsic value of z. So finally I take an

average of the results for crystals and films with higher Tc and obtain z = 1.57±0.08.

This result is consistent with the AC measurement result.

Now let us look at the question that how and why the obtained values of z

are dependent on the Tc for samples with lower Tc. I examined the process of

172



determination of Tc and critical exponent z from an E-J derivative plot. In the

DC experiment, heating can be a big problem. At low enough applied current,

the heating effect is negligible. However, at high applied current, the sample will

be heated and the heating of the sample at high current density can create extra

nonlinear behavior and distort the shape of the I-V curves.[139] In addition to that,

another problem in DC experiments is the influence of finite size effects, which

distorts the low current density data.

To avoid these problems, we use dLog(E)/dLog(J) vs. J in the middle range of

current density to determine Tc and critical exponent z, in which range the curves

are thought to be less distorted. Fig. 6.7 shows how finite size effects and heating

possibly change the dLog(E)/dLog(J) vs. J curve. When Jmin and Jmax are far

away from each other and dLog(E)/dLog(J) vs. J curve is flat in a large current

density range at Tc, the determined Tc and critical exponent z should be correct.

Samples with lower transition temperature are normally less homogeneous, with

more disorder and larger resistivity. The larger resistivity increases the influence of

heating, which means Jmax will be smaller. The inhomogeneities may also introduce

another length scale inside the sample. If this length scale is less than the thickness

of the film, it will increase the finite size effects, which means Jmin will be larger. Due

to stronger finite size effects and the influence of heating, we tend to systematically

choose a lower temperature isotherm as Tc and then obtain a larger value of z.

A similar phenomena is that thinner samples tend to give larger values of z and

the larger bridge size samples also tend to give larger values of z. The latter case

has been discussed in Su Li’s thesis.[139]

From the above discussion, the Tc dependence of the value z from DC measure-

ment might be due to another length scale related with sample quality or due to the

heating influence in the measurement that is correlated with Tc. To systematically

clarify this question, more experimental and theoretical work are needed.

To summarize, I performed DC measurements on YBCO films grown on both
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NGO and STO substrates. The obtained value of z from DC measurement depends

on Tc of the sample. This dependence might be due to another length scale related

with sample quality or due to some systematic error in the measurement that is

correlated with Tc. To clarify this question, both experimental and theoretical work

are needed. However, for films with high Tc, sharper transition and small resistivity,

I obtained value of z = 1.56 ± 0.08, which is consistent with previous AC result

z = 1.55 ± 0.15. In addition, the latest DC measurement on high-quality crystals

also gave z ≈ 1.5.[139] These results tell that the superconducting to normal phase

transition is consistent with the model-E dynamics of the 3D-XY universality class,

which predicts z ≈ 1.5.
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Chapter 7

Electronic Transport Properties of

Single-walled Carbon Nanotube Films

7.1 Introduction

Networks with randomly distributed single-walled carbon nanotubes (SWCNTs)

are emerging as novel materials for various applications. [140, 162, 163] Sub-

monolayer networks close to the percolation threshold have shown potential as thin

film transistors with higher mobility than organic semiconductors.[164, 165, 166]

Thin SWCNT networks with thickness in the range of 10 to 100 nm have high

sheet conductance while maintaining high optical transparency. [156, 160, 161, 176]

These films can be used as transparent electrodes, which have already been demon-

strated to be excellent anodes particularly in organic solar cells and light emitting

diodes.[167, 168, 169, 170, 171] Thick SWCNT networks with thickness on the order

of micrometers have potential application as electrodes for fuel cells due to their

highly porous surface structure and large surface area.[172, 173]

For the sake of applications of SWCNT networks, a comprehensive understanding

of the electrical transport properties of such networks is important. For example,

when using SWCNT networks to construct high speed transistors, knowledge of

their frequency dependent electric transport properties are required. Also use of
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SWCNT networks as inter-connects in circuits requires knowledge of their electric

field-dependent properties. It has been established that the overall resistance of the

films is determined by the junction resistance between different tubes.[141, 142, 174]

To fully explore the potential applications of NT films as a type of electrical and

photonic material, it is important to map out the conductivity in a wide frequency

range. AC conductance measurements of a percolating NT network up to 1 MHz

have shown a universal power law in frequency, which is commonly observed in

systems with randomly distributed barriers. [143] In the THz range, the effective

Maxwell-Garnet (M-G) model has been introduced where both the metallic and

semiconducting NTs were embedded in a dielectric host.[144] Optical conductance in

the far-infrared and visible range has been obtained by measuring the reflectance of

NT films and a Kramers-Kronig transformation.[145, 146, 147] Study of conductance

in the microwave frequency range is important for high speed NT thin film field effect

transistors (FET). Microwave conductivity of individual SWCNT and operation as a

transistor at 2.6 GHz have been measured by Burke et al.[148] They also gave an RF

circuit model for carbon nanotubes.[149] However there is a paucity of conductivity

measurements on SWCNT films in this frequency range. So far, a few groups have

measured with a cavity setup, which can only lead to conductivity values at a few

discrete frequencies.[150, 151]

In addition, the frequency dependent and electric field dependent conductivity

have been investigated for certain density SWCNT networks. For example, the

AC conductance of carbon nanotube polymer composites close to the percolation

threshold are found to be increasing with frequency up to several MHz, exhibiting

a universal power law in frequency, which is commonly observed in systems with

randomly distributed barriers to transport.[143, 175] For thicker films with thickness

in the range of tens of micrometers, P. Peit et al. found that conductivities at DC

and 10 GHz are almost the same.[151] M. Fuhrer et al. observed the nonlinearity of

the electric field-dependent conductivity of relatively thick nanotube networks and
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they claimed that the charge carriers can be localized by disorder of SWCNTs with

an approximate localization length scale L of 1.65 μm.[177, 178] However there is a

lack of frequency and electric field dependent conductivity investigation for various

network densities, and also there is no correlation study between the onset frequency

ω0 and localization length scale L.

In this chapter, I first studied the microwave shielding effect of transparent and

conducting SWCNT networks with 30 nm thickness at different temperatures, I

found that SWCNT films are promising for the application of transparent EMI

shielding. Then I investigated the frequency and electric field-dependent conduc-

tivity for SWCNT networks with systematically varying densities. I find that the

onset frequency ω0 extracted from the frequency dependence measurement increases

as the film thickness increases while the length scale extracted from the electric field

dependent measurement decreases at the same time. Using the measured ω0 and

localization length scale L for different films, I developed an empirical formula and

established a relation between the two measurement methods, which is important

not only for the understanding of transport properties but also the application of

this novel material system.

7.2 Microwave Shielding of Transparent and Con-

ducting Single-walled Carbon Nanotube Films

Electromagnetic radiation at radio and microwave frequencies, such as those em-

anated from cell phones, tend to interfere with electronic devices. The electromag-

netic interference(EMI) leakage from radio frequency to microwave is still a serious

problem for our society. The primary mechanism of EMI shielding is usually reflec-

tion. Thin metal foil and metal grids are commonly used for this purpose. Recently

light-weight, flexible and highly effective shielding can be achieved by means of a

177



conducting polymer coating,[154] although degradation is an intrinsic problem. A

matrix containing conductive fillers is an attractive alternative for shielding.[154]

Composites incorporating NTs have extremely low percolation threshold(volume

fraction around 10−4) due to the high ratio of length to diameter.[152] Highly con-

ducting SWCNTs and multiwalled carbon nanotubes(MWNT)[153] have been incor-

porated into composites for EMI shielding purposes and 49 dB shielding effectiveness

at 10 MHz has been achieved for 15% NT loading of a polymer composite.[155]

In many situations visibly transparent EMI shielding is required and indium tin

oxide (ITO) is the current material of choice. NT films have shown potential as the

replacement for ITO for transparent electrodes in devices.[140] Up to now, there is

no systematic investigation on EMI shielding effects of NT films, especially for the

microwave frequency range where the EMI leakage is mostly concentrated. In this

chapter, by measuring the microwave conductivity of NT films from 10 MHz to 30

GHz at different temperatures, we found that SWCNT films are promising for the

application of transparent EMI shielding.

Figure 7.1: (a) A photograph of SWCNT films on PET substrate; (b) Top view of

the gold corbino contact to the sample(a=0.5mm and b=1.9mm); (c) interface of

microwave connector to the sample(not to scale)
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SWCNT films on polyethylene terephthalate (PET) substrates are fabricated by

the transfer printing method[156]. A typical test film has 30 nm thickness and 80%

optical transmittance, shown in Fig. 7.1.(a). A gold contact was deposited to form

a Corbino disk on the sample surface, as shown in Fig. 7.1(b). Fig. 7.1(c) shows the

coaxial cable/film interface. With this setup, we are able to measure the complex

reflection coefficient Ŝ11 of the film continuously over the frequency range from 10

MHz to 30 GHz using an Agilent E8364B PNA.[91, 92] The surface impedance of

the sample can be extracted from Ŝ11:

Zs(ω) = Z0
2π

ln b
a

· 1 + Ŝ11(ω)

1 − Ŝ11(ω)
, (7.1)

where Z0 = 50Ω is the characteristic impedance of the coaxial transmission line and

”a” and ”b” are the inner and outer diameters of the sample contact, respectively.

The obtained surface impedance Zs(ω) includes a contribution from the NT film ZNT
s

and a contribution from the substrate and the sample holder Zsub
s . To extract the

surface impedance of the NT film alone we also measured Ŝ11 of the pure dielectric

PET substrate on the same sample holder. In our measurement, the film thickness

t0 and the complex propagation constant kNT in the NT film satisfy t0|kNT | � 1 and

measurements are made below the frequency of the lowest propagating waveguide

mode in the sample/substrate so 1
Zs(ω)

∼= 1
ZNT

s
+ 1

Zsub
s (ω)

. The surface impedance

ZNT
s of the NT film is obtained by subtraction and the conductivity is obtained as

σ(ω) = 1/ZNT
s t0.

Real and imaginary parts of the conductivity vs frequency are plotted in Fig.

7.2(a) and (b). For all the different temperatures, the conductivities keep their dc

value up to about 100 MHz and start to increase at higher frequency. Both the real

and imaginary parts of the conductivity start to increase dramatically approximately

from 10 GHz and no saturation is observed in the measurement range. The real part

increases by a factor of around 2 from 1 GHz to 30 GHz. P. Peit et al. found that

conductivities at DC and 10 GHz are almost the same.[151] The discrepancy between
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our data and theirs might be due to the difference of NT sources and purities, which

could change the frequency onset of the increase. In many disordered materials the

extended pair approximation model σ(ω) = σ0(1 + k(ω/ω0)
s), s < 1, is used to

describe the frequency dependence of the conductivity.[143] Using this model to fit

the data, we found good agreement with k = 0.134 and s ≈ 0.55 for frequencies

below 10 GHz. At higher frequency, the data begin to deviate from this model

as also reported by Kilbride et al.[143] The extended pair approximation model is

too simple to fully describe the complete behavior of such a system and a more

sophisticated model is needed.[143]

Figure 7.2: (a) and (b) are real and imaginary parts of conductivity vs microwave

frequency at different temperatures; (c) and (d) are real and imaginary parts of

conductivity vs temperature at various frequencies, respectively.

We measured the conductivity of the sample from 173 K to 323 K, where shield-

ing materials are normally used. The temperature dependence of Re(σ) is small and
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Re(σ) gets slightly larger at high frequency, while the temperature dependence of

Im(σ) remains small, demonstrating that the shielding effectiveness is not temper-

ature sensitive.

Fig. 7.2(c) shows the DC conductivity and the real part of AC conductivity vs.

temperature at various fixed frequencies. The real part of conductivity increases

with temperature and displays a shallow maximum at T ∗ ≈ 225K. This non-

metallic to metallic crossover phenomena was investigated by Fischer et al.[157]

The difference in T ∗ between this report and others is a result of high intertubular

coupling, which was discussed by Bekyarova et al.[158] The DC resistivity fits very

well to the tunneling model

ρT = Ae−
Tm
T +Be

Tb
Ts+T (7.2)

with Tm = 775.2K, Tb = 30.5K, Ts = 45.9K, where Ae−
Tm
T is the metallic contri-

bution and Be
Tb

Ts+T is semiconducting part contribution. The first term in Eq. 7.2

accounts for the quasi-1-D metallic conduction with a characteristic energy kBTm

to account for the backscattering of the charge carriers, and the second term corre-

sponds to fluctuation-induced tunneling between metallic regions that are separated

by small barriers; A and B are geometrical factors, kBTb is the energy required for

charge carrier tunneling through the barriers, and Ts/Tb is the quantum-induced

tunneling in the absence of fluctuations and accounts for the suppression of the

conductivity at low temperature.[158] The good fitting suggests that the carrier

transport in the SWCNT films is governed by tunneling through barriers between

conducting NTs. The imaginary part of AC conductivity does not change signifi-

cantly with temperature, as plotted in Fig. 7.2(d).

The dielectric constants ε = ε1 + iε2 of SWCNT films are calculated using: ε1 =

1 + Im(σ)
ωε0

, ε2 = Re(σ)
ωε0

. As plotted in Fig. 7.3(a), the real part increases from around

−107 at 10 MHz to around −10−5 at 10 GHz. The negative value of ε1 indicates

that the charge transport is dominated by delocalized-carriers(metallic).[150] The
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Figure 7.3: Shielding effectiveness and transmittance of SWCNT films. (a) ε1 and ε2

vs frequency;(b) microwave shielding effectiveness(SE) vs frequency; (c) Microwave

shielding effectiveness vs thickness; (d) Calculated SWCNT optical transmittance

vs thickness.

imaginary part decreases significantly from around 4× 108 in the MHz range to 105

in the GHz range.

The shielding effectiveness(SE) as a function of frequency for different film thick-

ness is calculated through the formula[119]:

SEtotal = −10logT, (7.3)

where T is the electromagnetic radiation transmittance, which depends on the com-

plex index of reflection n+ ik and the bulk reflectivity R. This formula is applicable

when the film thickness is much less than the wavelength. Calculated values of SE

deduced from data are plotted in Fig. 7.3(b). The shielding effectiveness decreases as

frequency increases(approximately SE ∝ log(1/f)), except for the 10μm thickness
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film for which a sharp increase occurs at about 1 GHz due to internal interference

in the film. For the 10 nm film, the shielding effectiveness varies from 43 dB to 28

dB in the range of 10 MHz to 30 GHz. For the 10μm film the shielding effective-

ness is 70 dB at 10 MHz and 78 dB at 30 GHz, which meets the military shielding

requirement.[159] The data for shielding effectiveness vs film thickness at different

frequencies are plotted in Fig. 7.3(c). At all frequencies, the shielding effectiveness

increases with thickness (approximately SE ∝ log(d)) except for the sharp jump at

10μm for 1 GHz and 10 GHz.

SWCNT films are widely studied for transparent electrodes due to the high

transmittance in the visible and infrared range.[160] For the sake of transparent

shielding applications, we calculate the visible transmittance(at a wavelength of

550nm) vs. film thickness using the formula in Ref.[119] with index of refraction

N = 1 for air and N = 1.06 + 0.24i for the NT film.[147] In Fig. 7.3(d), the

transmittance of SWCNT films is 90% for 10 nm thickness and 60% for 80 nm

thickness. For the 30 nm thickness film, the optical transmittance is about 80% and

shielding effectiveness is 33 dB at 10 GHz, 36 dB at 1 GHz and 46 dB at 10 MHz.

The widely used transparent shielding material, Indium tin oxide (ITO) with sheet

resistance 100Ω/�, has 30 dB shielding effectiveness at 1 GHz for 80% transmittance

with 1μm thickness, which is lower than that of SWCNT films.

The conductivity of NT films has been measured by others in different frequency

ranges. The frequency dependent conductivity follows the plasma behavior similar

to that in metals with a plasma frequency between 0.1 THz and 1 THz.[150] At

higher frequency it was found that the conductivity has two peaks. One peak is near

10-20 meV corresponding to the secondary bandgap which may be caused by rolling

up graphene to create the NT.[145] The location of this peak varies substantially

from sample to sample dues to the different SWCNT sources. The other peak is the

optical bandgap around 1 eV. The conductivity at the optical bandgap edge slightly

depends on chemical doping and NT purity, whereas that of the secondary bandgap
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Figure 7.4: Sketch of conductivity of SWCNT film in a broad frequency range: from

DC to visible.

largely depends on doping and purity.[147] Combined with our measurement, a

master sketch of conductivity is made in a broad frequency range(DC to 1016Hz),

as shown in Fig. 7.4. For different NT sources, purities and chemical doping levels,

the position and height of the peak corresponding to the 20 meV gap as well as the

plasma frequency will change. Meanwhile, the peak at the optical band gap remains

the same.

We found the shielding effectiveness of SWCNT films satisfies requirements for

some commercial applications (e.g. cell phones require approximately 20dB shield-

ing effect). For some extremely high shielding requirements, such as for magnetic

resonant imaging window where 60 dB shielding effectiveness is required, the current

transparent NT films still needs to be improved. This can be done by using opti-

mized chemical doping, longer tubes or solely-metallic NTs, which will increase the

shielding effectiveness without sacrificing the optical transmittance.[161] Along with
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more development of commercial NT sources, larger scale and cheaper fabrication

methods, SWCNT films are promising for transparent EMI shielding applications.

The master sketch of conductivity provides guidance for exploring the potential

applications of NT films as a type of electrical and photonic material.

7.3 Frequency and electric field dependent con-

ductivity of single walled carbon nanotube

networks of varying density

In this section, we focus on the frequency and electric field dependent conductivity

of single walled carbon nanotube networks of various densities. The ac conduc-

tivity as a function of frequency follows the extended pair approximation model

and increases with frequency above an onset frequency ω0 which varies over seven

decades with a range of film thickness from sub-monolayer to 200 nm. The nonlinear

electric field-dependent conductivity shows strong dependence on film thickness as

well. Measurement of the electric field dependence of the resistance R(E) allows

for the determination of the length scale L of localized states, which is found to

systematically decrease with increasing film thickness. The onset frequency ω0 of

ac conductivity and the localization length scale L of SWCNT networks are found

to be related and an empirical formula has been constructed. Such studies will help

the understanding of transport properties and broaden the applications of this novel

material system.

SWCNT networks on polyethylene terephthalate (PET) are prepared by the

spraying method.[179] Nanotube powder from Carbon Solution Inc. was dispersed

in water with Sodium dodecyl sulphate (SDS) surfactants. After the nanotubes were

sprayed on the substrate, the samples were rinsed in water thoroughly to wash away

the surfactant. The network density was controlled by the solution concentration
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and the spraying time. The nanotubes formed bundles with size of 4-7 nm.[179] The

thickness of the films range from submonolayer to 200 nm corresponding to sheet

conductance ranging from 10−6 to 10−2 S. Fig. 7.5 shows SEM pictures of two films

with different densities.

Figure 7.5: SEM of two samples with different densities. (a) sub-monolayer nan-

otube film; (b) nanotube film with thickness about 20 nm.

Here we still use the the Corbino reflectometry setup to investigate the conduc-

tivity of the SWCNT networks. In order to measure the conductivity in as broad

a frequency range as possible, two test instruments are used, the Agilent E8364B

network analyzer (covering 10 MHz to 50 GHz) and the Agilent 4396B network
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analyzer (covering 100 kHz to 1.8 GHz).

7.3.1 Frequency dependent conductivity for various film thick-

nesses

The data of conductance vs. frequency are shown in Fig. 7.6(a). For all the

films, the real parts of the conductance keep their dc value up to a characteris-

tic frequency and start to increase at higher frequency. This kind of behavior has

been widely observed for disordered systems.[180, 181] Similar behavior has been

found for carbon nanotube polymer composites close to the percolation threshold,

in which the extended pair approximation model was applied to describe the ob-

served phenomena.[143, 175] The carbon nanotube networks in Fig. 7.6(a) have

density well above the percolation threshold. However, since the junction resis-

tance between different tubes are much larger than the resistance of the tubes

themselves,[141, 142, 174] SWCNT networks above the percolation threshold can

still be seen as systems with randomly distributed barriers for electrical transport.

In this case the extended pair approximation model can be used to describe the ac

conductance:

σ = σ0(1 + k(ω/ω0)
s) (7.4)

where s ≤ 1.0, k is a constant and ω0 is the onset frequency.[181]

Our obtained frequency dependent conductivities fit well to the extended pair

approximation model. Fig. 7.6 shows the relation between the fit film onset fre-

quency and the dc sheet conductance. The onset frequency changes from 2× 106 to

1 × 1010 Rad/sec as the sheet conductance increases from the 10−6 to 10−2 S. The

onset frequency of the ac conductance increases as the dc conductance increases.

The solid line in the figure has slope one, implying a linear relation between the

onset frequency and their dc sheet conductance, or ω0 ∼ σ0.
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Figure 7.6: (a) Real parts of the ac conductance for samples with different densities;

(b) Fit onset frequencies vs dc conductance of nanotube networks. The solid line

has slope 1.

The universality of ac conduction is common in many disordered materials.[180,

181] For the polymer-nanotube composite thin films, the scaling behavior of conduc-

tivity and frequency have also been shown. [143] Similar to Kilbride et al.’s work,

taking the dc conductivity σ0 and the onset frequency ω0 as scaling parameters, we

plotted the ac conductivity data for different samples in Fig. 7.7. They display a

scaling behavior with all data sets falling on the same master curve.

We also measured the frequency-dependent conductance of ultra thin sub-monolayer

nanotube networks, which are fabricated via the filtration method.[183] We choose

Chloroform as the solvent instead of water to avoid the washing steps which can

188



Figure 7.7: Master scaling curve showing the ac conductivity for samples with dif-

ferent densities. The red line is a fit to the extended pair approximation model.

easily destroy the sub-monolayer film structure. The network density is controlled

by the concentration and volume of the solvent used.[183] The conductance of these

films are measured by an impedance meter covering the frequency range from 20

Hz to 1 MHz. For these films just above the percolation threshold, their frequency

dependent conductivities also fit well to the extended pair approximation model.

In Fig. 7.8, we plot the onset frequency versus their dc sheet conductance. For

comparison, we also used results in Kilbride et al.,[143] and plotted the onset fre-

quency vs. conductance for Polymer-nanotube composites. The three solid lines in

Fig. 7.8 all have slope one (rad/sec · S). Here an interesting result is that although

the intercepts are very different, the slopes of the three different samples are essen-

tially the same. The difference in intercept is due to the different sources. Different

carbon nanotube sources have different bundle sizes, which causes the conductivity

difference. The polymer-CNT composite has much smaller DC conductance than

the other two, which is due to the separation of SWCNTs by polymer that leads to

charge transfer barriers.

In order to explain the observed onset frequency change with the SWCNT volume
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Figure 7.8: The onset frequency vs. dc conductance for different nanotube networks.

The three solid lines all have slope one.

fraction for polymer-nanotube composites close to percolation threshold, Kilbride

et al. defined a characteristic length scale, the correlation length ξ.[143] For our

samples which are well above the percolation threshold, we can similarly define the

correlation length ξ as the distance between connections in the sample, i.e., the

distance between junctions of the multiply-connected SWCNT network. When one

measures the frequency dependent conductivity for a given frequency, there is a

typical probed length scale. At low frequencies (corresponding to long time scales),

the carriers travel long distances in one-half ac cycle and the experiment investigates

longer length scales. At high frequencies, the carriers travel short distances in one

half ac-cycle and the probed length scale is shorter. In the absence of an applied

DC electric field, the probed length scale Lω ∝ ω−1/2.[143]

For low frequency, Lω > ξ, the probed length scale spans multiple junctions of

the SWCNT network. The junction resistances between different tubes are much

larger than the resistances of the tubes themselves. [141, 142, 174] Hence the con-

ductance is small and equal to the dc conductance. As the frequency increases, Lω

becomes smaller than ξ, Lω < ξ, and the junction resistances have less contribu-
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tion to the total resistance. The intrinsic properties of the SWCNT then dominate

the measurement. Therefore the observed conductance increases as the frequency

increases. The transition frequency is expected to be that where carriers scan an

average distance of order of the correlation length. [143]

The SWCNT film can be treated as a random walk network, in which the probed

length scale at a given frequency goes as Lω ∝ ω−1/2. Then with the onset frequency

ω0 of samples we are able to estimate their correlation length ξ ∝ Lω0 ∝
√

1
ω0

. As

the density of the SWCNT networks increases, there are more junctions and the

average distance between connections, the correlation length ξ, becomes smaller

and thus the onset frequency ω0 increases. This is the behavior shown in Fig. 7.6.

7.3.2 Electric field dependent conductivity for various film

thicknesses

From the observed frequency dependent conductivity, we observed that the correla-

tion length ξ varies as the thickness of the film increases. Due to the large resistance

of junctions between different tubes, the carriers in the SWCNT networks are eas-

ier to move on small length scales than an larger length scales. This phenomenon

inspires us to investigate the localization properties of such a system. According to

the works of M. S. Fuhrer et al. and A. B. Kaiser et al., the localization behavior

of SWCNT network can be studied by measuring the electric field dependent non-

linearity of the conductivity. [151, 177] Generally increasing both the temperature

and the electric field reduces the effects of localization. So a system of localized

charge typically displays a characteristic electric field at which nonlinear conductiv-

ity begins to appear. Through measurement of the characteristic field Ec one can

determine a length scale of the localized system:

L =
kBT

eEc
(7.5)
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where L corresponds to the size of the regions with good conductivity. For our

SWCNT films L depends on the average distance between connections,[184] eEL

is the energy gained by a carrier in one conducting region on average. In the case

that the localization of carriers results from strong disorder, L is a measure of the

Bohr radius a of a localized state.[185] For relatively thick films with low sheet

resistance, Fuhrer et al. found the temperature-independent localization length

scale L is approximately 1.65μm in a SWCNT film.[177, 178]

Here we investigated the electric field-dependent conductivity for different films,

and we found that the nonlinear behavior strongly depends on the thickness of the

film. At low temperature, all the samples show nonlinear behavior of resistance on

electric field, and the critical field EC is larger for thicker samples and smaller for

thin samples. At room temperature, all the other samples are purely ohmic(linear)

in electric fields up to 100 V/cm, except for the thinnest sample, sample 5, which

showed electric field-dependent conductivity at all temperatures.

Here the probe used to perform the measurement was specially designed to reduce

the heating effect. The heating effect and the possible induced temperature rise on

sample when performing voltage current characteristic measurement in this probe

have been addressed in Su Li’s thesis.[139] According to his discussion, the possible

temperature rise on SWCNT films should be less than 1 K in our measurement

range.

The resistance vs. electric field of a very thin film(sample 5) at different temper-

atures is shown in Fig. 7.9(a). We can see clearly that there is nonlinear behavior

even at room temperature. As sketched in Fig. 7.9(a), we extracted Ec for each

temperature, which is the characteristic electric field at which nonlinear conductiv-

ity begins to appear.[177] Fig. 7.9(b) shows the extracted Ec vs temperature for this

sample. As temperature increases, Ec also increases. Roughly Ec and temperature

have a linear relationship and satisfy the equation Ec = kBT/eL, with L ≈ 50μm.

The observed localization length scale L ≈ 50μm in this very thin film is much
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Figure 7.9: (a) Resistance vs electric field for a very thin film (sample 5) at different

temperatures. (b) Ec vs temperature and extracted localization length scale for this

sample.

larger than what was reported by M. S. Fuhrer et al.[177, 178] For this very thin

film, the localization length scale was dramatically increased compared to the thick

film. To investigate the dependence of the localization length scale on the film

thickness, we measured the electric field-dependent conductivity for samples with

various thicknesses and extracted their localization length scale. The localization

length scale for different density films are shown in Fig. 7.10 as round-dot. Clearly

the localization length scale L depends on the density of the SWCNT networks. For

the thicker film with larger SWCNT density, which has larger sheet conductance,

the localization length scale is smaller. Combined with the frequency dependent

conductivity, we believe that the poor inter-bundle junctions affected the localization
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length scale. The lower density with larger average distance between the junctions

has larger localization length scale. The higher density film, which has smaller

average distance between the junctions, has smaller localization length scale.

Figure 7.10: Comparison of the localization length scale obtained from electric field

depend conductivity data(red dot) and the estimated localization length scale from

frequency dependent conductivity measurement(black star). The line has slope -1/2

in the above log-log plot.

Although the localization behavior may be affected by the individual SWCNT

[177, 178], the above result shows that the localization behavior is also a consequence

of poor electric conduction between inter-bundle junctions. For very thin films, the

inter-bundle connections even dominate the localization behavior. As the thickness

and density increase, there are more and more connections, which decreases the

localization length scale, as shown in Fig. 7.10.

When the film thickness increases to a large value, the density of the SWCNTs

and connections of the film will finally saturate and stop increasing. For those very

thick SWCNT films (also called mats), their correlation length ξ will be independent

of the thickness. The localization length scale and the onset frequency are deter-

mined by the distribution of nanotubes and the properties of individual bundles,
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which include both the disorder of the individual nanotube and also the geometry

of the bundles. These properties affect the junction resistance and also the density.

Hence the difference of SWCNT sources and purities can change the onset frequency.

We believe this is the reason that our previous work found that the ac conductivity

follows the extended pair approximation model with an onset frequency ω0 about

10 GHz, but Peit et al. found that SWCNT networks have the same conductivities

at DC and 10 GHz for SWCNT networks with thickness in the range of tens of

micrometers.[176, 151]

7.3.3 Discussion of the frequency and electric field depen-

dent conductivity

The frequency dependent conductivity shows that the onset frequency ω0 increases

with the sample thickness and gives an estimation of the correlation length ξ of the

sample, ξ ∝ Lω0 ∝
√

1
ω0

. ξ and Lω0 decrease as the sample thickness increases. The

DC conductivity measurement shows the localization length scale L of the samples

also decreases with the sample thickness. Qualitatively Lω0 and L have the same

dependence on the sample thickness. Because both Lω0 and L depend on the ξ, we

propose a linear relation between L and 	Lω0 :

L = CfLω0 (7.6)

Here Lω0 is the typical probed length scale at the onset frequency ω0 and Cf should

be a constant on the order of one. With the assumption Cf = 1, we can assume Lω ∝√
A
ω

, where A is fitting parameter. We can obtain this fitting parameter A from our

experiment data, A ∼ 2.5×10−3m2/s. With this parameter, the onset frequency ω0

can be translated to the localization length scale L. Fig. 7.10 shows the comparison

of the localization length scale L measured directly through electric-field dependent

conductivity measurements(round-dot) and the translated L from the frequency

dependent measurement(black-square). They are consistent with each other. In
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this way we obtained an empirical formula to relate the frequency dependent and

the electric field dependent conductivity. In the above discussion, we take A as a

constant, which may depend on the diffusion properties of the SWCNT films.[186] To

get deep physical understanding of this constant, more investigation and theoretical

work are needed.

The combination of the frequency dependent and electric field dependent con-

ductivity measurements confirmed the localization behavior is not only due to the

individual SWCNTs, but also a consequence of conduction across poor interbun-

dle connections. For thinner films, the localization length scale is larger and the

interbundle resistance contributed more to the resistivity, which we have tested by

performing temperature dependent conductivity measurements for different density

films.

To conclude, we systematically studied the frequency and electric field depen-

dent conductivity of SWCNT films with various thicknesses. We found the poor

interbundle junctions affect the localization behavior of the carriers in the SWNCT

films, which causes strong thickness dependence of the localization length scale. A

thinner film has larger correlation length ξ and localization length scale L, so it has

smaller onset frequency ω0, whereas a thicker film with smaller correlation length

ξ and localization length scale L, has larger onset frequency ω0. The approximate

empirical formula of the onset frequency ω0 and localization length scale relates the

frequency and the electric field dependent conductivity, which helps us to under-

stand the electric transport properties of the SWCNT films.

196



Chapter 8

Conclusion and future work

8.1 Results and Conclusions

I have successfully developed a unique broadband frequency measurement system

for surface electrical conductivity measurement (100 kHz to 50 GHz) from room

temperature to cryogenic temperatures. We conducted research on the fluctuations

at the superconductor to normal phase transition and electric transport properties

of single walled carbon nanotube networks with the developed system.

I studied microwave conductivity of YBa2Cu3O7−δ thin films around Tc for dif-

ferent incident microwave power. The length scales in AC measurement have been

systematically discussed. At low current density J but high ω, the critical behavior

can be examined without getting into finite-size effects. However, at low current

density J and low frequency ω, LAC > d, the critical behavior will be destroyed by

finite-size effect. In this region, we can not observe the phase transition.

With very small applied microwave power, which is -46dBm, and using the high

frequency part of the data, I investigated fluctuation effects in YBa2Cu3O7−δ thin

films around Tc by taking frequency-dependent microwave conductivity measure-

ments. We proved that the determination of Tc is crucial for the conventional data

analysis method. With an improved setup, I took measurements at a smaller tem-

perature increment. Through an improved conventional data analysis method and

197



a newly developed analysis method, the critical temperature can be determined

precisely. I obtained a critical exponent z = 1.55 ± 0.15, which is consistent with

model-E dynamics of the 3D-XY universality class. Finally the scaling behavior

of the fluctuation conductivity was also shown both above and below the critical

temperature.

Frequency-dependent microwave conductivity measurements and dc current-voltage

characteristics have also been combined together to investigate fluctuation effects

of Y Ba2Cu3O7−δ on the same film. The dc measurement verified that the applied

microwave power of -46dBm in our ac measurement is small enough for the cor-

rect determination of Tc and critical exponents. I found that the dc measurement

could be affected by disorder. For higher Tc YBCO films and crystals, the critical

exponent z is also around 1.5, which is consistent with the ac measurement.

Finally, using our broadband experimental technique and DC VI measurement

system, I measured the transport properties of single-walled carbon nanotube films.

A shielding effectiveness of 43 dB at 10 MHz and 28 dB at 10 GHz is found for films

with 90% optical transmittance, which suggests that SWNT films are promising as

a type of transparent microwave shielding material.

I also systematically studied the frequency and electric field dependent conduc-

tivity of SWCNT films with various thicknesses. I found that the poor interbundle

junctions affect the localization behavior of the carriers in the SWNCT films, which

causes strong thickness dependence of the localization length scale. A thinner film

has larger correlation length ξ and localization length scale L, and has smaller onset

frequency ω0 whereas a thicker film with smaller correlation length ξ and localization

length scale L, has larger onset frequency ω0. The approximate empirical formula of

the onset frequency ω0 and localization length scale relates the frequency dependent

and the electric field dependent conductivity together and helps us to understand

the electric transport properties of the SWCNT films.
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8.2 Future Work

Although we could finish here with all we have accomplished, I feel it is better to

list some interesting things that have not been done.

One extension of this work here is to study the power dependent properties at

even lower frequency. By utilizing additional instruments we can measure the surface

conductivity at lower frequencies. We may be able to observe the clearer crossover of

frequency dominant fluctuation conductivity to current density dominant fluctuation

conductivity. Taking this kind of experiment on different thickness of films and also

crystals with different applied power, we will be able to establish a quantitative

relation between probed length scale LAC and current density and frequency.

Another extension of the work is to study fluctuation effects in magnetic fields.

It would be interesting to see how the critical exponents and scaling functions in zero

field are modified by applied magnetic field. It would also be interesting to compare

the dc results in magnetic field with the ac result in magnetic field. Although it is an

interesting topic, there are lots of challenges here. There would be three variables,

frequency ω, current density J and magnetic H , as well as sample thickness. They

might all have induced length scales, and interact with each other, which would

make this question difficult, but interesting.

In this work, we studied the optimal-doped Y Ba2Cu3O7−δ film and investigated

the universality of the scaling behavior of the fluctuation conductivity in the high Tc

superconductors. So one natural question is how about other samples? A systematic

experimental investigation of different high Tc superconducting materials would be

very helpful for studying the universality of the scaling behaviors. Y Ba2Cu3O7−δ is

a hole-doped HTSC material. It would be interesting to investigate some electron-

doped HTSC materials, for example, PCCO film, which can be easily fabricated in

our Center. For this experiment, we only need to add some extra thermal shielding

layers in the system so that the sample can be cooled to lower temperature.

199



The other interesting thing to do is to investigate under-doped YBCO films. I

have successfully developed a method of fabrication of different doping YBCO sam-

ples. Using our broadband measurement system, we can investigate the frequency

dependent conductivity of under-doped YBCO samples, particularly above Tc, and

the pseudogap properties.

Finally, since the broadband measurement technique is powerful, we may also

apply it to other fields outside the superconductivity, such as investigate frequency

dependent properties of carbon nanotube films, and study dielectric critical phe-

nomena. I believe this will give us lots of opportunities. An open mind will lead us

forward.
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Appendix A

Current-Induced Length Scale (Notes

Due to Prof. C. J. Lobb)

A.1 Initial considerations

Consider a simple model for fluctuations in superconductors, where we assume that

the only fluctuations are circular vortex loops of radius r. The energy of such a loop

can be written as

Uloop = 2πrε(r) (A.1)

where ε(r) is the energy per unit length of the vortex loop of radius r. For a straight

vortex, the energy was given in Eq. 5.17 by Tinkham in Gaussian unit [15],

ε(r = ∞) = (
Φ0

4πλ
)2 ln(

λ

ξ
). (A.2)

In general, curvature will increase the energy per unit length.

In an infinite superconductor with no applied current, vortex loops of differ-

ent sizes occur with different probabilities as thermal fluctuations. Formally, the

probability of finding a loop of size r in a range dr is given by

P (r)dr =
e−

2πε(r)
kT dr∫∞

ξ
e−

2πε(r)
kT dr

. (A.3)
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Note that here vortex loops of all sizes occur.

Suppose we wanted to find the size of a typical vortex loop. One way to do

this is to integrate Eq. A.3 from this typical size, which we call rthermal, to ∞, and

require that the fraction of loops F with r > rthermal be equal to 1
2
,

F =

∫∞
rthermal

e−
2πε(r)

kT dr∫∞
ξ
e−

2πε(r)
kT dr

≡ 1

2
. (A.4)

In Eq. A.4, I used the approximation that ε(r) is independent of r. Eq. A.4 leads to

rthermal = ξ +
kT

2πε
ln 2. (A.5)

If the second term on the right hand side of Eq. A.5 dominates, this gives

rthermal = ξ +
kT

2πε
ln 2 → ε =

kT

2πrthermal
ln 2. (A.6)

Eq. A.6 states that, within a factor of ln 2, the total energy of a vortex loop of size

rthermal is equal to kT, which is a plausible result.

To check whether the second term on the right side of Eq. A.5 is the dominant

one, combine Eqs. A.2 and A.5. Using κ ≡ λ/ξ, this leads to

rthermal = ξ[1 +
ξ

(16π2kT
Φ2

0
)

κ2 ln 2

2π lnκ
] = ξ[1 +

ξ

ΛT

κ2 ln 2

2π lnκ
] (A.7)

where ΛT is defined in Eq.1.1 of the Fisher, Fisher, and Huse paper.[54] The second

term in Eqs. A.5 and A.7 dominate in the critical regime because ξ diverges while

ΛT is fixed. For simplicity, we drop the ln 2 in Eq. A.5, and use

rthermal =
kT

2πε
. (A.8)

Next consider that a current per unit area J is applied to a plane perpendicular

to the area of the loop. The total Lorentz force on the loop is

Fext = 2πrJΦ0. (A.9)
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Taking the minus one times the derivative of Eq. A.1 gives the force that the loop

exerts on itself. Summing the forces and finding the point where the force is equal

to zero leads to a critical loop size

rblowout =
ξ

Φ0J
, (A.10)

where, for simplicity, ξ(r) is again assumed to be independent of r.

Physically, if a vortex loop has r > rblowout, the external current ”blows out” the

loop to infinite size; this process leads to dissipation. If r < rblowout, the vortex loop

shrinks and annihilates.

The above equation can be also interpreted in different ways. The presence of a

current density J significantly alters the population of vortex loops with r > rblowout,

and has less effect on the vortex loops with r < rblowout. In this sense, a current J

probes the physics on length scales of order rblowout and larger. This is the type of

language that has been used to describe LJ . As I’ll show below, it is probably not

correct to describe LJ in this manner.

What is the physical significance of comparing the various lengths, rblowout and

rthermal, Eqs. A.8 and A.10, to each other? If rthermal � rblowout, the current is

probing a length scale where there are very few vortices. The current thus acts as a

very small perturbation on the system. If rthermal � rblowout , the current is probing

a very short length scale, and a large portion of the intrinsic vortex population is

being disrupted by the current. The point where If rthermal = rblowout thus marks

a crossover in the behavior from current acting as a small perturbation to current

acting as a large perturbation.

What is the physical significance of comparing the various lengths, rblowout and

rthermal, Eqs. A.8 and A.10, to the film thickness d? It is plausible to say rthermal � d

is the three-dimensional limit, while rthermal � d is the two-dimensional limit, since

in the second case most of the vortex loops are interrupted by the film thickness,

while in the first case they are not. This is true as far as it goes, but it misses the
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key point that an applied current probes physics at the scale of rblowout and larger,

as discussed above. Thus, even in the limit rthermal � d, if rblowout is small enough,

it will probe physics on length scales smaller than d, and thus the measurement

will not be affected by the finite thickness of the film. What is required is that the

current probes a significant fraction of the loop population and also probes lengths

on the scale of the film thickness. For this to be true, it is reasonable to require that

rblowout = rthermal ≡ LJ (A.11)

Combining Eqs. A.8,A.10 and A.11 gives

LJ = (
kT

2πΦ0J
)

1
2 (A.12)

This suggests the following physical description for LJ : For any J there is a length

scale LJ , given by Eq. A.12, such that roughly half the equilibrium (zero current)

vortex population is blown out by J , and the other half are not. This is the length

that one should compare to the film thickness for seeing whether or not the measure-

ments are in the two or three dimensional limit. The requirements are that there

be a significant fraction of the loops that feel the film thickness, and, in addition,

that the current is probing on the same length scale.

A.2 A More Realistic Model for ε(r)

In this section, we use the analogy between a vortex loop and wire loop to calculate

ε(r). For convenience, the SI units are used. We start with an analogy between a

long straight wire carrying a current I1. This current creates a magnetic field B1

given by

B1 =
μ0I1
2πr

(A.13)

A parallel wire carrying a current I2 feels a force per unit length given by

f = B1I2 (A.14)
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and the energy per unit volume associated with a field B is given by

E

V
=

B2

2μ0

(A.15)

Next, consider a straight vortex. Outside the core but inside the penetration depth,

for ξ � r � λ, there is a circumferential velocity given by

v1 =
n1h

2πm∗r
(A.16)

Where n1 is an integer, h is Planck’s constant, and m∗ is the Cooper pair mass.

(n1 is included to make comparisons clearer, the usual case is n1 = 1). If there is

a second parallel vortex with vorticity n2, the force per unit volume exerted by the

first vortex on the second is given by

f = j1n2Φ0 (A.17)

Where j1 is the current per area created by the first vortex, so that j = n∗q∗v, where

n∗ is the Cooper pair density, q∗ = 2e, and v is the superfluid velocity.

Finally, the energy per unit volume associated with a superfluid velocity is just

the kinetic energy,

E

V
=

1

2
n∗m∗v2 (A.18)

Eqs. A.13-A.15 are analogous to A.16-A.18, and the physics is the same. In both

cases, there is a 1/r field (B or v) with an energy that is quadratic in the field.

You can use the analogy to map well-understood problems involving currents and

inductances onto problems involving vortices.

To do this, the following translation table has been made, See Tab. A.1. By

substituting quantities in the first column into results from circuit theory, you get

analogous results for vortices. For example, substituting the appropriate second-

column quantities into Eq. A.13 leads to Eq. A.16.

This is particularly valuable to calculate energies of systems. This is done using

the inductive energy formula

E =
1

2
LI2. (A.19)
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Table A.1: Analogy between wire loop and vortex loop

Currents Vortices

μ0
1

m∗n∗

I hm∗n∗

B v

.

Ramo, Whinnery, and Van Duzer’s book gives the formula for the inductance of a

wire loop with a radius a benting into a loop radius r, which is the distance from

the center of the loop to the center of the wire.[137] The formula is

L = μ0(2r − a)[(1 − k2

2
)K(k) − E(k)] (A.20)

Where E(k) and K(k) are complete elliptic integrals of teh first and second kind,

E(k) =

∫ π/2

0

√
1 − k2 sin2 φdφ,K(k) =

∫ π/2

0

1√
1 − k2 sin2 φ

dφ (A.21)

and

k2 =
4r(r − a)

(2r − a)2
. (A.22)

Using the translation table A.1 and Eqs. A.19 to A.22, we can get the energy of

a vortex loop of radius r and thus the energy per unit length ε(r). Note that the

analogy requires that the superfluid velocity varies as 1/r, so that ξ � r � λ.

As an example, I’ll look at Eq. A.20 in the limit a � r, ie, the loop is much

larger than the coherence length. In this limit, E(k) ≈ 1 and K(k) ≈ ln( 4√
1−k2 ),

which leads to

L = μ0r[ln(
8r

a
− 2)]. (A.23)

Using table A.1 and Eqs. A.19 and replacing a by ξ, this leads the energy per unit

length of a vortex loop with radius r of

ε = π
�

2

m∗n
∗[ln(

r

ξ
) + ln 8 − 2] ≈ π

�
2

m∗n
∗[ln(

r

ξ
)] (A.24)
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It is interesting to note that the last form matches Eq. A.2 at r = λ, even through

it was derived assuming that r � λ. Thus it is probably a good approximation to

use

ε(r) ≈ (
Φ0

4πλ
)2[ln(

r

ξ
)], for ξ �≤ λ (A.25)

ε(r) ≈ (
Φ0

4πλ
)2[ln(

λ

ξ
)], for r � λ (A.26)
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Appendix B

Fitting of microwave conductivity for

sample xuh139 in different frequency

ranges

In the chapter 4, I determined Tc through an improved conventional data analysis

method by doing quadratic fits of log(|σfl|)vs. log(f) and linear fits of φfl vs. log(f)

in the frequency range 0.4 to 10 GHz. In this appendix, I show in more detail the

fitting results in different frequency ranges.

The positive sign of the second order coefficient of the quadratic fit of log |σfl|
vs. log(f) means the curves bend up in a log-log plot and a negative sign means

they bend down. So the determined Tc should between the two isotherms where

their signs change. Similarly, signs of the slope of φσ(ω) vs. log f also tell where Tc

should be.

Here the Table B.1 and B.1 show that the determined Tc can change upon ad-

justment of the frequency range used to do the fits. This brings some error in

the determination of Tc. After carefully checking Table B.1 and B.2, we determine

Tc = 89.22 ± 0.05 K.
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Table B.1: Sign of the coefficient of (log f)2 of quadratic fit for log |σfl| vs. log(f)

in different frequency ranges for different temperatures for sample xuh139.

Frequency range (GHz) 89.087 89.140 89.192 89.245 89.297 89.350

0.2 to 10 + + + + - -

0.3 to 10 + + + - - -

0.4 to 10 + + + - - -

0.5 to 10 + + - - - -

0.7 to 10 + + + + - -

0.9 to 10 + + + + - -

0.3 to 4 + + + - - -

0.3 to 6 + + + - - -

0.3 to 8 + + + - - -

0.3 to 12 + + + + - -

0.4 to 4 + + + - - -

0.4 to 6 + + + - - -

0.4 to 8 + + + - - -

0.4 to 12 + + + + - -

0.5 to 8 + + - - - -

0.5 to 12 + + + + - -

0.6 to 8 + + + - - -

0.6 to 12 + + + + - -

0.7 to 8 + - - - - -

0.7 to 12 + + + + - -

0.8 to 8 + + - - - -

0.8 to 12 + + + + - -
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Table B.2: Sign of the slope of linear fits to φσ(ω) vs. log f for different frequency

ranges for different temperatures for sample xuh139.

Frequency range (GHz) 89.087 89.140 89.192 89.245 89.297 89.350

0.2 to 10 - - - + + +

0.3 to 10 - - + + + +

0.4 to 10 - - - + + +

0.5 to 10 - - - + + +

0.7 to 10 - - - - + +

0.9 to 10 - - - - + +

0.3 to 4 - - + + + +

0.3 to 6 - - + + + +

0.3 to 8 - - + + + +

0.3 to 12 - - + + + +

0.4 to 4 - - + + + +

0.4 to 6 - - + + + +

0.4 to 8 - - + + + +

0.4 to 12 - - - + + +

0.5 to 8 - - - + + +

0.5 to 12 - - - + + +

0.6 to 8 - - - + + +

0.6 to 12 - - - + + +

0.7 to 8 - - - + + +

0.7 to 12 - - - - + +

0.8 to 8 - - - + + +

0.8 to 12 - - - - + +
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HTSC High temperature superconductor

YBCO Y Ba2Cu3O7−δ

GL Ginzburg-Landau

TDGL Time dependent Ginzburg-Landau

AL Aslamazov-Larkin

MT Maki-Thompson

LSCO La2−xSrxCuO4

PCCO Pr2−xCexCuO4

NGO NdGaO3

STO SrT iO3

YSZ Yttrium-stabilized Zinc oxide(Zirconia)

PLD Pulsed laser deposition

XRD X-ray diffraction

AFM Atomic Force Microscope

SEM Scanning electron microscope

RBS Rutherford Back Scattering

FFH Fisher Fisher and Huse

SWCNT Single-walled carbon nanotube

MWCNT Multi-walled carbon nanotube

SE Shielding effectiveness

ITO Indium tin oxide

EMI Electromagnetic interfere
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